
On the Structure of Learning and Transfer
in Machines

Janith Petangoda
Department of Computing

Imperial College London

a dissertation submitted for the degree of

Doctor of Philosophy

November 2022

2

This page was left intentionally blank.

3

Declaration

This dissertation and all research contained in it are the product of my original
work unless stated otherwise.

I certify that, to the best of my knowledge, I have acknowledged the work,
ideas and outcomes of others explicitly via citations, or in the main text. I
have done my best to adhere to standard practices of academic integrity and
discipline.

4

This page was left intentionally blank.

5

Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its
contents are licensed under a Creative Commons Attribution 4.0 International
Licence (CC BY).

Under this licence, you may copy and redistribute the material in any medium
or format for both commercial and non-commercial purposes. You may also
create and distribute modified versions of the work. This on the condition that
you credit the author.

When reusing or sharing this work, ensure you make the licence terms clear to
others by naming the licence and linking to the licence text. Where a work
has been adapted, you should indicate that the work has been changed and
describe those changes.

Please seek permission from the copyright holder for uses of this work that are
not included in this licence or permitted under UK Copyright Law.

6

This page was left intentionally blank.

7

Acknowledgments

I begin by thanking my examiners, David and Daniel. I know that this thesis
was a dense read; I thank you for your time and insight. Your thoughts gave me
confidence to believe that this work could, with some extra work, be practically
useful.

Thank you to the members of Do Not Circulate; Kate, Arinbjörn, Daniel and
Isak for the casual yet somehow intense discussions that eventually ended in a
workshop paper.

Chatura, thank you listening to my (often) incoherent ramblings. These helped
me consolidate what I understood as I tried to learn what was needed for this
thesis.

Marc, thank you for allowing me to pursue the unusual direction that I took
with this work, and for your eternal patience with me as I erratically tried
different directions and failed to do anything in time. Thank you also for
dealing with my horrendous writing, and teaching me how to write clearly
and concisely. I am also grateful for the funding that you found me. It really
helped me and my family during the previous 4 years, and gave me the peace
of mind to focus on my work.

Nick, your friendship during the last 9 years has been an inspiration. Our chats
were instrumental to the ideas that were written here. You showed me the
value in my romantic thinking, and inspired me to pursue the joy in research
and learning. Thank you. Also, I swear we will finish that paper soon!

Amma and Thaththi, I am eternally grateful for your support and love during
this PhD. I wouldn’t have been able to do it without your guidance.

Laura, your patience during the restless nights, and my bouts of stress was
unimaginable. For this I am in your debt.

8

This page was left intentionally blank.

9

Abstract

Machine Learning (ML) is often described as a process of learning about
patterns and relationships. Structure is an example of the relationship between
spaces of things; in this work, we provide a definition of learning in machines
written as the process of learning unknown structure. This produces a unified
view of ML that affords us concrete notions of spaces of tasks, and how they
relate to chosen models.

Using such a view, we define what it means to transfer between ML problems,
and how to learn to transfer. Our definition embodies the notion that transfer
is tightly coupled with biases, in that to transfer is to assume biases. Further,
we define transfer in the same language of structure as we did vanilla learning;
the key difference manifests as the structure that is learnt. This definition
highlights differences between learning to transfer, and learning by transfer.

We provide a framework, based on the theory of foliations that expresses our
notions of transfer in the context of structure. We express popular methods of
transfer in ML using our framework, and discuss how our framework informs
us about the benefits of transfer.

The primary goal of this thesis is to introduce the mathematical and philosoph-
ical frameworks by which learning and transfer in machines can be expressed
and interpreted consistently in terms of structure.

10

This page was left intentionally blank.

11

Table of Contents

1 Introduction. 15
1.1 Contributions . 16
1.2 Roadmap . 17
1.3 Map of Definitions 18
1.4 Notes on notation. 21

I The Structure of Learning 23

2 Tasks and Spaces of Tasks. 25
2.1 Structure and systems 27

2.1.1 Hierarchies of systems 30
2.1.2 Subsystems 31

2.2 A Structural Definition of Tasks 32
2.2.1 Interacting with systems 32

2.3 Probability and Tasks 33
2.4 Arguments for a Structural Definition of Tasks 35
2.5 Examples of tasks in Machine Learning 37

2.5.1 Task of Supervised Learning. 37
2.5.2 Task of Reinforcement Learning 38

2.6 Spaces of Tasks. 43
2.6.1 Task spaces as Smooth Manifolds 47

3 Models and Symmetries 51
3.1 Model Architectures 51
3.2 Symmetries in Architectures 53
3.3 Parametric model spaces as smooth manifolds 55
3.4 Visualising symmetries using GENNI 60

12 Table of Contents

4 Learning in Machines 63
4.1 Learning Problems 63

4.1.1 Subject of learning 63
4.1.2 Loss functions 66

4.2 Learning Algorithms. 68
4.2.1 Gradient Descent 69

5 Representations and Learning 71
5.1 Representations 71

5.1.1 Representation of a system 73
5.1.2 Equivalence of representations 75
5.1.3 Local and Total Representations 76
5.1.4 Examples of Representations 77
5.1.5 Properties of Representations 81

5.2 Learning in terms of Representations 83
5.3 Relation to Category Theory 84

II The Structure of Transfer 87

6 Defining Transfer . 89
6.1 Everyday Examples of Transfer 90
6.2 Bias and Transfer 94
6.3 Notions of Transfer and Relatedness 97

6.3.1 Relatedness 99
6.4 Learning to Transfer. 101

6.4.1 Equivariance of Transfer 103

7 Foliations and Transfer 107
7.1 Foliations . 108
7.2 Relatedness from Foliations 112
7.3 The leaf space and learning to transfer 116

8 Examples . 119
8.1 Multitask Learning 120
8.2 Transfer Learning 121
8.3 Meta Learning . 123

8.3.1 Prototypical Networks: Simple Meta-Learning 123
8.3.2 Model Agnostic Meta Learning (MAML) 124

8.4 Reinforcement Learning 128
8.4.1 Practical Implementation 129
8.4.2 Experiments 131

8.5 Discussion . 134

13

9 Conclusion . 137
9.1 Future Work . 138

Bibliography . 141

Appendix . 151

A Mathematical Preliminaries 153
A.1 Topology . 153
A.2 Measure Theory and Probability 155
A.3 Manifolds . 158
A.4 Groups and Group Actions 160

B Miscellaneous Definitions and Proofs 163
B.1 Intersection of Subsystems 163

C Hyperparameters. 165
C.1 Cartpole . 165
C.2 Distral . 165

List of Figures . 167

List of Definitions . 171

List of Theorems, Lemmas and Corollaries 175

List of Propositions and Conjectures 177

14 Table of Contents

This page was left intentionally blank.

The chances of finding out what’s really going on in the universe
are so remote, the only thing to do is hang the sense of it and keep
yourself occupied.

— Douglas Adams
A Hitchhiker’s Guide to the Galaxy

Chapter 1

Introduction

As individuals capable of general learning, we intuitively know that transfer
plays an important and necessary role in the process of learning. Instead

of having to learn every minute detail necessary to live our lives, we are able
to re-use those details that are shared. This is clearly a useful ability to have.
Imagine if for every new terrain of ground we encounter, we would have to
re-learn how to control our muscles; the number of trials needed would mean
we would spend our lives doing little else.

Transfer is usefulConsider now that we needed to do the same intellectually. If we learn how to
carry out addition over some set of numbers, we would need to re-learn how to
carry out the same operation over any other, unseen combination of numbers.
Instead, we are capable of transferring that knowledge and applying it to new
numbers we had not computed addition over. We are able to apply the same
set of rules to a new situation.

Transfer compresses the costs of learning, storing and representing knowledge,
new or otherwise. If what we want to learn, store or represent is related
to something new, transfer allows us to only learn, store or represent the
differences between them, without wasting resources on what is already known,
stored or represented.

Brief history of
transfer in ML

Given such benefits of transfer, it comes as no surprise that we would like to
enable learning machines to reap such benefits. Work in the field progressed
through suggestions for lifelong learning [109, 110], multi-task learning [14, 94],
and learning internal representations of biases, and inductive bias transfer
[6, 7]. An idea of meta-learning, or learning to learn, was initially written by
Schmidhuber in [89, 90]. More modern approaches that have built on these
works include advances in deep learning based meta-learning [115, 43], few-shot
learning [119], deep multitask learning [82] and neural architecture search [27].
In these, transfer allows us to learn using less data, computational resources,
and time by leveraging relevant information. In the case of multitask learning,
it can also lead to better generalisation [14].

The missing linkWhile the literature on transfer is rich with algorithmic and experimental
contributions, it lacks a foundational framework that guides and unites the

15

16 Introduction Chapter 1

exposition. The literature is vague about what it means for tasks to be related,
and this relationship corresponds to transfer. It also writes it as a separate
procedure to the learning of single tasks, rather than another learning procedure
applied on a different kind of problem. This is partly due to the inextensibility
of existing definitions of learning to accommodate transfer consistently. In this
thesis, we aim to provide a framework that fills these gaps.

1.1 Contributions

Summary of the
framework

The contributions of this thesis can be summarised as a framework that
provides:

1. a definition of learning written in terms of structure (Part 1),

2. a generally applicable, philosophical definition of transfer that emphasises
the structure of transfer (Chapter 6),

3. the application of our definition of transfer to the context of learning,
written as the learning of the structure associated with transfer (Chapters
7 and 8), and

4. a distinction between learning to transfer and learning by transfer (Sec-
tion 6.4) .

Through this framework, we show that learning, be it vanilla learning, or
learning using transfer, is a process of identifying structure. The key differences
between these can be characterised by the structure that is being identified. In
learning related to transfer, the structure is often related to a particular space
of problems that is carried out by some vanilla learning. Our framework unifies
these points of views, and expresses their differences in terms of a hierarchy
of structure. In other words, learning to transfer is the same as learning, but
applied at a higher level.

Submitted papers Contributions in the form of submitted papers are summarised below, in
chronological order:

Disentangled Skill Embeddings for Reinforcement Learning [76]: We
developed a novel multi-task reinforcement learning method that exploited
known structure about how tasks would be sampled. Tasks varied according to
their transition dynamics and reward functions; our methods used knowledge
about the qualitative structure of the variations that made up the training
tasks. The present author’s contributions (DSE-REINFORCE) are summarised
in Section 8.4.

GENNI: Visualising the geometry of equivalences for neural network
identifiability [59]: Symmetries of the input-output map of a neural network
can be important in understanding the optimisation that occurs during learning
over the parameters of a network. However, understanding and accounting

Section 1.2 Roadmap 17

for the symmetries of a network can be very difficult, even for the simplest of
architectures. Section 3.4 summaries a technique we developed to help visualise
potential symmetries near network models.

Learning to Transfer: A Foliated Theory [75]: This paper provides a
summary of the initial results of this thesis, excluding those from the previous
two contributions. It introduces the idea that a formal framework for transfer
is needed, and that if done properly, we could combine techniques of some
major fields of machine learning. In particular, we provide a group theoretic
definition for transfer from first principles. This thesis expands on the ideas
presented in this paper in greater detail.

1.2 Roadmap
The primary goal of this thesis is to introduce a complete and principled view
of transfer in general, and apply this to transfer in the context of learning. Our
definition casts transfer as something that can occur whenever properties can
be shared between descriptions objects. For example, there is a sense in which
transfer can occur between the knowledge of a cat and an owl (they are both
animals), the storage of images, or the dynamics of different pendulums.

Components needed
for Transfer

To define transfer in this way, we must identify some core components. The
first of these is a set of objects. Here, objects can be anything, be it abstract
notions, images, dynamical properties or others. We require that there exists
a set of properties which can be used to uniquely identify each thing within
the set of objects. These could, for example be the color and size of cats and
owls, the RGB values of each pixel of an image, or the mass and length of a
pendulum. Such properties are what can be transferred.

We can define a notion of transfer on this set of objects. A notion of transfer
defines sets of related objects, which are defined such that transfer can occur
between elements of these sets. Objects are related by their membership
in such sets, and their relationships facilitate transfer. Intuitively, we know
that transfer occurs between related objects; a notion of transfer captures
this relationship. The exact transformation between objects is described by
a notion of relatedness that can be defined on, or derived from a notion of
transfer.

Components of
Transfer in Learning

In the context of learning, we identify these components through the definitions
of a task and spaces of tasks. A task defines what it is we want to learn. It
is described as relationships (which we call structure maps) between chosen
relata. These structure maps are the properties of tasks that can be used to
define a notion of transfer. A space of tasks contains well defined variations of
the structure maps of a task. Alternatively, we can first define a space of tasks
as variations of structure maps, and a task is a particular instance of these
variations. The space of tasks is the set of objects on which transfer can be
defined for a learning problem.

18 Introduction Chapter 1

In order to carry out machine learning however, we also require notions of
models, loss functions, and learning algorithms. Together, these form learning
problems and their solution. In a broad sense, we will describe machine learning
as the process of finding descriptions of unknown structure. The unknown
structure is defined on a learning task The model space is the language we can
describe this unknown structure. A loss function characterises the suitability
of each model in this space for representing the unknown structure of the task.
A learning algorithm finds the most suitable model, and therefore description.

When machine learning is defined this way, it allows us to unify the problem
of learning to transfer (and any other higher order learning), with what we
typically think of as single task learning. In the structural view of machine
learning, learning is a process of finding a representation that suitably preserves
the structure of the learning task. Learning to transfer is a similar process
carried out at a higher level. Instead of learning the structure of single learning
problem, we want to find a certain structure (a notion of transfer) over a set
of problems, thus allowing us to learn by transfer.

Summary of Part 1 Part 1 of this thesis looks at developing the formal definitions and theory of
all these components for single task machine learning. Chapter 2 introduces
structure maps, and how they relate to tasks. Further, in Section 2.6 we
show how variations of structure maps can be used to identify a space of
tasks. In Chapter 3 we introduce parametric models. We will show how
we can identify a model space from a model architecture. We will discuss
how symmetries in the input-output maps of a model can be accounted for.
Chapter 4 defines the remaining components, which include the loss function,
and learning algorithm. Finally, we conclude by unifying these notions in a
framework of representations.

Summary of Part 2 Part 2 will be the discussion of transfer. We provide a general description of
transfer in Chapter 6, and distinguish between learning to transfer and learning
by transfer. Chapter 7 provides an introduction to foliations. The theory of
foliations is used as the mathematical tool for concretely describing transfer
on a space of tasks, and consequently on the space of models. We then adapt
the definition of loss functions and learning algorithms to enable a mechanism
for learning to transfer. In Chapter 8 we recontextualise existing methods in
terms of our framework. We end with conclusions and potential future work.

1.3 Map of Definitions
To help the reader to parse this thesis, we provide maps that show the rela-
tionship between some definitions and examples are shown in Figures 1.1 - 1.6.
These are organised by chapter; connections between chapters are shown by
reusing the relevant definitions.

Note that the arrows in these diagrams should be read as ‘used in’. For example,
in Figure 1.1, Relata is used in the definition of System.

Section 1.3 Map of Definitions 19

Relata

Structure

System Task
Task
Space

Probabitive
Process

Data-
generating

Process

System of
Functions

Derived
System

Total
Variation

Space

Figure 1.1. Map of Definitions for Chapter 2.

Parametric
Model
Space

Model
Architecture

equivalence

Figure 1.2. Map of Definitions for Chapter 3.

Task
Space

Learning
Task

Subject of
Learning

Space of
Learning

Tasks

Loss
Function

Learning
Problem

Learning
Algorithm

Space of
Proxy
Maps

Proxy
Map

Parametric
Model
Space

Figure 1.3. Map of Definitions for Chapter 4. Dashed boxes are definitions
from other chapters. Relationships between these, if any, are not depicted here.

20 Introduction Chapter 1

System

Space of
Learning

Tasks

Loss
Function

Parametric
Model
Space

Learning
Algorithm

Total Rep-
resentation

Local
Induced Rep-
resentation

Representation Interpretation

Top. Man-
ifold as
Repre-

sentation

Learning
as finding

descriptions

Union

Figure 1.4. Map of Definitions for Chapter 5. Dashed boxes are definitions
from other chapters. Relationships between these, if any, are not depicted here.

Notion of
Transfer

Notion of
Relatedness

Transfer

Set of Related
Objects

Pseudogroups

Transfer
between objects

Transfer
Model Space

Parametric
Model Space

Transfer
Task Space

Task Space

Learning
to Transfer
Algorithm

Transfer Loss
Function

Loss Function

Learning
by Transfer

Figure 1.5. Map of Definitions for Chapter 6.

Section 1.4 Notes on notation 21

Theorem:
Related-

ness from
Foliations

Notion of
Transfer

Notion of
Relatedness

FoliationPlaqueLeaf

Figure 1.6. Map of Definitions for Chapter 7. Dashed boxes are definitions
from other chapters. Relationships between these, if any, are not depicted here.

1.4 Notes on notation
The notation in this thesis can be unwieldy at times. For this reason, we
summarise the following notational rules that we used throughout this thesis,
unless otherwise stated.

• R refers to the real space, endowed with the standard topology, and the
usual vector space structure. It is also assumed that R+ = [0,∞).

• Sets will be denoted by upper case letters, such as X. The complement
of a set is denoted by Xc, and the closure of a set as X. Note that this
notation only makes sense when X is a set. For more clarity, we will say
the closure X.

• We will use the letters UX and VX to refer to subsets of a set X; the
subscript won’t be specified if the superset if obvious.

• A topology on a set X will be denoted as OX .

• Maps and functions will be denoted using f and g.

• Vectors are denoted by v. We use v if it is necessary to distinguish a
vector from a scalar.

• Special spaces, elements of these spaces and maps that are key to this
thesis will be denoted using the franktur font from the AMSFONTS
package [46] of LaTeX.

• When denoting objects of a certain type, such as vectors, we will con-
sistently use the notation given above, and will differentiate between
different objects of the same type using subscripts, and superscripts
(when necessary for clarity).

• Remarks, Examples and Proofs conclude with •, ▲ and ■ on the bottom
right, respectively.

• Where necessary, we provide informational boxes that describe compli-
cated notation.

22 Introduction Chapter 1

This page was left intentionally blank.

23

I

The Structure of Learning

24 Introduction Chapter 1

This page was left intentionally blank.

25

Chapter 2

Tasks and Spaces of Tasks

When one thinks of a machine learning (ML) problem, they would inevitably
think of it terms such as supervised learning, reinforcement learning (RL)

and unsupervised learning. Such names imply major differences between each
ML problem; these differences can include their description, their formulation,
or the techniques that are used to solve them. The setting of supervised
learning for example, where one tries to find a function that best fits a given
set of labelled data, is contrasted with unsupervised learning, which deals with
unlabelled data. In turn, they differ wildly to the problem of reinforcement
learning, which is akin to an optimal control problem where environments,
agents and policies are involved1.

These differences make the field of ML rich with knowledge and techniques
inspired from mathematics, physics, computer science and evolutionary biology.
There is however a common, underlying thread between these problems that
allows us to make a definition of ML. Mitchell [67, Chapter 1] defines learning in
machines as the process by which a computer program improves itself (relative
to a given task and performance measure) with experience. From a slightly
different point of view, Bishop [11, Chapter 1] implies that ML is a form of
pattern recognition, where automatic (i.e. algorithmic) methods are used to
discover regularities in data. It should be noted that these definitions are not
mutually exclusive, but they put emphasis on different aspects.

What is structureIn this thesis, we want to place emphasis on the latter view. ML, in its
broadest sense, is the problem of using machines to find useful representations
of structure. Structure can be thought of as a set of rules, relationships or
restrictions that can be said about a set of things. It allows us to identify
such a set of things as the particular set (as opposed to other sets of things)
that satisfies the structure imposed on it. In mathematical logic, structure is
precisely defined as a vocabulary of function and relation symbols which have
particular interpretations when applied to a set [16]2. In this way, a field has
the structure given by 2 operations (often symbolised as + and ×) and the set
over which they act on.

1It should be noted that we can combine these methods into a learning pipeline.
2We have simplified the description here for clarity and brevity.

26 Tasks and Spaces of Tasks Chapter 2

Structure, described as relationships between things that constrain or identify
sets of things, can be seen in a variety of examples. Take the function f : R→ R,
such that,

f(x) = ax+ b, (2.1)

where x, a, b ∈ R. For particular values of a and b, f is a relationship that is
satisfied between some values x, y ∈ R; if one were to pick two elements of R
at random, they do not necessarily satisfy the relationship given. Thus, the
structure here allows us to identify the subspace R2 of the particular straight
line.

Structure can also be found in nature, where the regularities of honeycombs
(see Figure 2.1) and crystalline objects, of the cyclic motions of planets and
pendulums, and of the behaviours of flocks of birds and schools of fish can be
construed from relationships that the constituent components satisfy between
them. In the philosophical theory of Ontic Structural Realism, it is even
posited that structure itself is the true and most fundamental nature of reality
[30, 28]!3

Figure 2.1. The regular structure of a honeycomb pattern. The structure of a
honeycomb can be described as collection of points in R2 that form regular
hexagons (with a constant side length), and have all sides adjacent to another
hexagon. An alternative structure is that its the points of R2 that can be
constructed using the repeated boundary of a regular polygon (with constant
side length), such that they maximise the packing density of the area enclosed.

When looked at from this point of view, knowledge of structure allows us to
identify the inclusion of elements in the set of things that obey said structure.

3(Epistemic) Structural Realism (SR) was initially described by Worrall [126] as a way
of reconciling Scientific Realism with the properties of Scientific Revolutions: if scientific
theories can change so drastically, then surely they cannot be describing the fundamental
nature of reality. SR noted that structural relationships remained consistent however, and
thus stated that the scientific method led us to valid relationships between our self-defined
objects that were good enough. Ontic Structural Realism took this further by claiming that
structure was in fact the true nature of reality.

Section 2.1 Structure and systems 27

For example, given Equation (2.1), we can, for any value of (x, y) ∈ R2, test
whether they satisfy the rule given by straight line. Alternatively, given any
x, y ∈ R, we can find the corresponding y, x respectively, that satisfies this
structure. If we are given a portion of a regular crystalline lattice, and are told
to extend it, we can easily generate new points and connection that satisfy the
structure of the lattice. In mechanics, knowing that the motion of an object is
governed by a particular differential equation allows us to trace its future path,
after knowing only its initial conditions.

ML aims at using machines to identify such structure, and to then describe
this structure using a useful representation. In the case of Equation (2.1), one
could describe the structure as the literal sentence:

the set of real numbers x, y where the difference between y and
the product ax is equal to a constant b.

Such a representation of the structure is quite useless, even for a human, who
would have to translate this to an equation of the form given by Equation
(2.1); even then, for unwieldy numbers, they would often have to translate this
into a form that could be understood by a machine (such as a calculator, or a
general purpose computing device). Of course, the usefulness of a description
is contextual (for example, if one wanted to waste another’s time, then the
statement above would be quite useful!)

Summary of the
chapter

From this view, a ML problem has to refer to its structure and how it is going
to be represented. This chapter focuses on the former. We formally define a
system and its structure in Section 2.1. Then, Section 2.2 describes how a task
can be defined in terms of structure. In this thesis, we will mostly be working
from a deterministic point of view. For completeness, in Section 2.3, we will be
restating our main definitions probabilistically. Following examples of tasks in
Section 2.5, we will end with a discussion of how we can formally think about
variations of systems and tasks, and consequently spaces of tasks.

2.1 Structure and systems

Tasks as systems
with structure

If machine learning tries to find structure, a description of the task of a machine
learning problem must include the system the structure of which it tries to find.
Structure is a relationship between relata; a system is a collection containing
relata, and relationships between them. When a task is described, the relata
is often known, or assumed, and the a subset of the structure is unknown,
prompting us to search for it (in this case, using machine learning).

Given a system, there can then be a process by which we interact with it. This
is the mechanism that allows us to gather data, which are glimpses of the
unknown structure that we wish to learn. Such a process takes a particular
system, and presents us with some information that is described in some

28 Tasks and Spaces of Tasks Chapter 2

representation that is accessible4 to us (see Section 5.1 for a more in-depth
discussion of representations). Since the structure of a system can be learned
only if we can interact with it, a task must necessarily be described with
a data-generating process. In addition, since we expect machines to do the
learning, the data-generating process must describe the data in a representation
that is accessible to machines.

Definition 2.1.1 (Structured System).Definition of a
Structured System

A structured system z (or system) is
the tuple (R,S) of relata R and associated structure S.

R corresponds to a set of sets, spaces, or systems themselves (see Section 2.1.1)
that can admit relationships between each other. The structure S corresponds
to these relationships. That is,

Definition 2.1.2 (Structure).Definition of a
Structure

Suppose we are given a set of sets or spaces,
denoted by R. A structure S on R, consists of:

a) a set of domains and codomains derived from R. These can be subsets or
sets of subsets. The elements of R must be included in this set.

b) a set of maps between possible products of elements of the set of domains
and codomains. This set must contain the identity maps for all sets in
R.

Notation. When writing out definitions of structures, we will omit the
identity maps for brevity; however, it should be assumed that they are
present.

Furthermore, the set of domains and codomains will typically just be R.
Therefore, unless necessary, we will not specify it when defining a structure.
As with the identity maps, when we do specify it, we will not be repeating
the elements of R.

Finally, if we write f ∈ S where f is stated to be a map, then we mean
that f belongs to the set defined by (b) in Definition 2.1.2. Similarly, if D
is a set, then D ∈ S is a domain or codomain from (a).

Thus, a system is a set of spaces that satisfy relationships between them that
are specified in its structure5. It should be noted that this definition does not
preclude relata or structures that are singletons; in fact, this is necessary to
allow for tasks that are learned by unsupervised learning, and reinforcement
learning (see Section 2.5.2).

Example 2.1.1 Linear Equation: Consider Equation (2.1); here, the relata
would be,

R = {R}, (2.2)
4By accessible, we mean that it can be manipulated by some party, be it a human, or a

machine.
5Such a definition of a system is applicable only in the context of the present work, and is

not meant to used generally.

Section 2.1 Structure and systems 29

where R has the standard topology and the expected vector space structure6.
The structure is,

S = {f : R→ R; f(x) = ax+ b}, (2.3)

where f and idR are continuous maps. ▲

Example 2.1.2 Topological Space: A topological space (see Appendix A.1
for more details) is a tuple (X,OX), where OX is a set of subsets of X that
must satisfy the conditions given in Definition A.1.1. That is, a topological
system ztop is,

ztop = (Rtop,Stop), (2.4)

where,

Rtop = {X},
Stop =

{
{OX},{ ⋃

: ...×OX × ...→ OX ; (..., U, ...) 7→
⋃

(..., U, ...) = ... ∪ U ∪ ...,

∩ : OX ×OX → OX ; (U1, U2) 7→ ∩(U1, U2) = U1 ∩ U2,

f∅ : OX → OX ;U 7→ f∅(U) = ∅,
fX : OX → OX ;U 7→ fX(U) = X

}}
.

We have specified the set of domains and codomains, which in this case is the
topology on X. The structure maps define the axioms that the elements of the
topology must satisfy. The first structure equation denotes arbitrary unions,
whereas the second set of structure maps denotes finite intersections. The final
equations ensure that the null set and the full set X are in OX .

Remark 2.1.1: As per Definition A.3.1, a topological manifold is a topological
space which satisfies certain conditions. Therefore, a topological manifold can
be written as a system. Similarly, we can extend this to a smooth manifold, if
in addition to the components in 2.4, we also include Rd and the domains of
the charts in the relata, and the chart maps are included in the structure. •

▲

Example 2.1.3 Vector Space: A vector space of dimension d over a field R
can be written as a system;

zV = ({V,R}, {f+ : V × V → V, f· : R× V → V), (2.5)

where f+ is commutative and associative, and f· is associative and distributive
over addition in the field R and f+. Further, V and R contain neutral elements
for f+ and f· respectively, along with appropriate inverse elements. ▲

6This allows use to add and multiply with elements of R.

30 Tasks and Spaces of Tasks Chapter 2

2.1.1 Hierarchies of systems
In Definition 2.1.1, the relata can be spaces of objects, and the structure are
relationships, denoted by maps, between such spaces. By being a space, each
relatum can have intrinsic structure that can affect the structure. For example,
it is often useful to make the relata topological spaces (see Appendix A.1),
which allows us to make the structure maps continuous. As we will see in
Section 2.3, it can be useful for elements of the relata to be probability spaces
(see Appendix A.2 for preliminaries about measure theory).

The structure of a system corresponds to the relationships that affect the
structure maps that we are interested in learning. If we are interested in
learning about any intrinsic structure, then we could re-write a space X in
terms of the structure in Definition 2.1.2. In Examples 2.1.2 and 2.1.3, we did
just that for a topological and a vector space, respectively.

From this, it would be beneficial if systems and their structure can be composed,
creating hierarchical descriptions of them. Formally;

Definition 2.1.3 (Inheritence of systems).Definition of a
Inheritence of
systems

Given a system z = (R,S), the
system zi = (Ri,Si) inherits z if,

X ∈ Ri, ∀X ∈ R,

f ∈ Si, ∀f ∈ S.

Notation. If we define a system z = (R,S), where X ∈ R is itself a system
(RX ,SX), then we mean that z inherits X.

The relata can constitute systems, and the structure maps in this system
are available to be used in the new system. This system has inherited the
systems in the relata. Consider the system in Example 2.1.1. It was necessary
that the relata {R} are at least vector spaces. In Equation (2.3), the key
structure map is f : R → R;x 7→ f(x) = ax + b, for a, b in R. When
writing this, we had invoked the structure maps fa : R→ R; f(x) = ax, and
f1,1 : R × R → R; f(x, b) 7→ f(x, b) = x + b from the vector space system in
Equation (2.5). By currying the second parameter of the latter, we can write
f as the composition,

f : R→ R
x 7→ f(x) = f1,1(b) ◦ fa(x).

Suppose, we further want to discuss continuity of structure maps. Then, the
domains and codomains of such structure maps must be topological systems.
Given topological systems,

z1
top = {{X1}, {OX1 ,S

1
top}},

z2
top = {{X2, {OX2 ,S

2
top}},

Section 2.1 Structure and systems 31

we can say that a system z = ({z1
top, z

2
top}, {f : X1 → X2}) has a continuous

structure map f if for U ∈ OX2 , then preimf (U) ∈ OX1 . Given the structure
maps of the topological spaces, this also means the f must satisfy this condition
under compositions with such structure maps.

2.1.2 Subsystems
Given a system (R,S), a subsystem of this system is a subset of it in the
following way,

Definition 2.1.4 (Subsystem). Definition of a
Subsystem

Given a system z = (R,S), a subsystem
z̃ = (Rz̃,Sz̃) is another system where,

Rz̃ = {S
∣∣ (S ̸= ∅) ⊆ U,∀U ∈ R},

Sz̃ = S|R
z̃
.

Notation. S|R
z̃

denotes

a) that for a domain or codomain an element of UX ∈ DX ∈ S, is a set
of subsets derived from X ∈ R,

(UX
z̃
∈ DX

z̃
) = UX ∩Xz̃,

b) and that structure maps to the subsets of the appropriate domains
and codomains as in Rz̃. That is, if say z = ({X,Y }, {f : X → Y }),
then a subsystem could be z̃ = ({UX , UY }, {f |{UX ,UY

} : UX → UY }).

Thus, a subsystem consists of relata that are subsets of the relata of the original
system, and its structure maps are similar, except that they are constrained to
the appropriate subsets.

Operations on subsystems. Unions and intersections of subsystems can be
defined as the following:

Definition 2.1.5 (Union of subsystems). Definition of a Union
of subsystems

Suppose we are given subsystems
z̃1 = (Rz̃1

,Sz̃1
) and z̃2 = (Rz̃2

,Sz̃2
) of a system z = (R,S). Then,

z̃1 ∪ z̃2 = (Rz̃1∪̃z2
,Sz̃1∪̃z2

),

where,

Rz̃1∪̃z2
= {U1 ∪ U2

∣∣ ∀(U1 ∈ Rz̃1
) ⊆ (U ∈ R)},∀(U2 ∈ Rz̃2

) ⊆ (U ∈ R)},
Sz̃1∪̃z2

= S|R
z̃1∪̃z2

.

Rz̃1∪̃z2
is the relata obtained by taking the union of a relata U1 ∈ Rz̃1

with the
corresponding relata U2 ∈ Rz̃2

where both U1 and U2 are subsets of the same
relata U ∈ R of the system they are subsystems of.

32 Tasks and Spaces of Tasks Chapter 2

Theorem 2.1.1.Union of subsystems
is a subsystem

Suppose we are given subsystems z̃1 and z̃2 of a system z.
Then z̃1 ∪ z̃2 is also a subsystem of z.

Proof. The proof follows by inspection. The elements of Rz̃1∪̃z2
are, by definition

subsets of elements in R. Furthermore, since none of the relata in z̃1 and z̃2
are null sets, Rz̃1∪̃z2

does not contain any null sets.

Finally, the restriction of a valid structure to a subset of its relata is also a
valid structure. ■

Similarly, the intersection of subsystems can be defined, as in Appendix B.1.

2.2 A Structural Definition of Tasks
The key difference between a task and a system is that, while a system is
defined abstractly, a task has a mechanism by which we can interact with it,
as we will see in this section.

2.2.1 Interacting with systems
For the purposes of learning, we must be able to interact with systems. This
can be done using probabitive processes;

Definition 2.2.1 (Probative Process).Definition of a
Probative Process

Given a system z = (R,S), a probative
process Pz that can be applied to (R,S) is a map,

Pz : Um → Un,

where U ∈ R, (m,n ∈ N) ≤ |R|, and Um = U1× ...×Um, and Un = U1× ...×Un

are product spaces of some or all elements of R.

Pz must also satisfy that,
Pz = f1 ◦ ... ◦ fs,

where fi ∈ S and (s ∈ N) ≤ |S|.

Notation. Henceforth, the notation for P(R,S) will be suppressed to P,
where the system it corresponds should be deemed from context, unless
otherwise specified.

Since there can be possible probative processes that are functionally different,
but have the same domain, we will denote by {Pi}U

m

i∈I , for Um = U1 × ...× Um

where Ui ∈ R, a set of probative processes that have the same domain Um. It
should be noted that this set does not contain every such probative process,
but a subset which satisfies the stated condition.

Probative processes are used to generate datasets. The process that generates
data is called a data-generating process, which is defined as:

Section 2.3 Probability and Tasks 33

Definition 2.2.2 (Data-generating Process). Definition of a
Data-generating

Process

Given a system (R,S), and a
collection of probative processes {Pi}U

m

i∈I , a data-generating process PD is the
map,

PD : Um → Un1
1 × ...× U

n|I|
|I|

r 7→ PD(r) =
(
P1(r), ...,P|I|(r)

)
.

A data-generating process is created from probative processes. We will call
the output of a data-generating process a data point. Then, a dataset is a
collection of data points.

Definition 2.2.3 (Dataset). Definition of a
Dataset

For a system (R,S) and a data-generating process
PD, a dataset D of size n is a set of the results of n applications of PD. Each
such output is a data point.

Notation. We will use P to denote a data-generating process, unless
specified otherwise. This is because we won’t be using probabitive processes
that aren’t data-generating processes.

Finally, we can present the following definition of a task,

Definition 2.2.4 (Task). Definition of a TaskA task, denoted by t, is a collection of a system
(R,S) that can admit one or more probative processes, and a data-generating
process P that is constructed using such processes. Thus,

t = ((R,S),P) (2.6)

In this definition, for a given system, we could have various tasks that differ
in their data-generating processes. A task, therefore, can be interpreted as
a system, and particular aspects of the system’s structure that we wish to
learn about; the data-generating process, which consists of various probative
processes that are composed of structure maps, embodies these aspects. Thus,
there can be structure maps that are not utilised in the data-generating
process, indicating that these structure maps cannot be directly interacted
with. However, these maps are important, nonetheless, and any ML solution
that tries to solve a ML problem based on a task must also satisfy these
structure maps.

2.3 Probability and Tasks
So far, the definitions that we had made were written in terms of deterministic
maps. However, it is also possible to make these definitions in probabilistic
terms, where instead of deterministic maps, we use either probability measures,
measurable maps or stochastic processes (see Appendix A.2). Probability
theory is useful in problem of ML, particularly because we often deal with
limited data, and datasets that aren’t necessarily generated deterministically.

34 Tasks and Spaces of Tasks Chapter 2

Thus, we can really only talk about averages, expressed with measures of
uncertainty.

In a probabilistic interpretation of Definition 2.2.4, the relata of a system would
be either probability spaces, or measurable spaces. Furthermore, the structure
maps would be measurable maps.

Definition 2.3.1 (Structure (probabilistic)).Definition of a
Structure
(probabilistic)

Suppose we are given a set of
spaces of things, denoted by R, where for X ∈ R, X is either a probability
space, or a measurable space. A structure (probabilistic) on R, SR, is a set of
measurable maps between appropriate elements of R.

S must also contain the identity maps for all spaces in R.

The structure maps could contain operations with other random variables, such
as white noise. Where the domains of a structure map is a product space, the
product measure space is assumed.

Definition 2.3.2 (System (probabilistic)).Definition of a
System
(probabilistic)

A system (probabilistic) is a tuple
(R,S) of relata, where for X ∈ R, X is either a probability space, or a
measurable space, and associated structure (probabilistic).

Then, a probative process (probabilistic) is as defined in Definition 2.2.1, where
now, we have compositions of measurable maps. The representation maps
would also be measurable. Where there are measurable maps, we would take
samples. Then, a data-generating process would produce samples of the joint
measure of the codomain that is induced by the composition of measurable
maps.

Definition 2.3.3 (Probative Process (probabilistic)).Definition of a
Probative Process
(probabilistic)

Given a system (proba-
bilistic) (R,S), a probative process (probabilistic) P(R,S) that can be applied
to (R,S) is a measurable map,

P(R,S) : Um → Un,

where U ∈ R, (m,n ∈ N) ≤ |R|, and Um,n = U1 × ...× Um,n is a product space
of some or all elements of R.

P must also satisfy that,
P = f1 ◦ ... ◦ fs,

where fi ∈ S and (s ∈ N) ≤ |S|.

Definition 2.3.4 (Data-generating Process (probabilistic)).Definition of a
Data-generating
Process
(probabilistic)

Given a sys-
tem (probabilistic) (R,S), and collection of probative processes (probabilistic)
{Pi}U

m

i∈I , then a data-generating process (probabilistic) PD is measurable map,

PD : Um → Un1
1 × ...× U

n|I|
|I|

r 7→ PD(r) =
(
P1(r), ...,P|I|(r)

)
.

Finally,

Section 2.4 Arguments for a Structural Definition of Tasks 35

Definition 2.3.5 (Task (probabilistic)). Definition of a Task
(probabilistic)

A task (probabilistic), denoted by t,
is a collection of a system (probabilistic) (R,S) that can admit one or more
probative processes (probabilistic), and a data-generating process (probabilistic)
P which is constructed using such processes (probabilistic). Thus,

t = ((R,S),P) (2.7)

Notation. In the section, we did not make a notational distinction between
the deterministic and probabilistic definitions of systems, structures, proba-
bitive processes, data-generating processes, or tasks. Neither will we do so in
the rest of this thesis, because we will be using the deterministic definitions
throughout this thesis, unless specified otherwise.

2.4 Arguments for a Structural Definition of
Tasks

A natural question that arises is whether there is a need for such a definition of
a task; why is it useful to use a definition of a task that explicitly exposes the
underlying structure of a system. In statistical learning theory, a learning task
(of a supervised learning problem) is defined as a measure (or a probability
density function) on a joint input-output space [92].

Definition 2.4.1 (Task (Statistical learning theory)). Definition of a Task
(Statistical learning

theory)

Given a measurable
space (X × Y,ΣX×Y), a task is a measure τ on this space.

Such a definition has a few advantages. For one, it is quite simple to understand;
the same structure that we had described is still present implicitly in the
measure, but it is hidden from the practitioner. Furthermore, this definition
directly gives us the data-generating process; it is the process of sampling
from the task. Thus, from such a definition, we are saying that the data was
generated from some probability distribution; we do not care much about
the internal mechanisms of this distribution, but expect that it contains the
structure that we are interested in learning about. In fact, our definition (if
written probabilistically) subsumes this definition.

Due to its simplicity, Definition 2.4.1 is also practical. From this, we can
derive such things as the Probably Approximately Correct (PAC) learning
scheme, from which wonderful and useful ideas have been bourn. PAC learning
captures the uncertainty that is encountered when dealing with datasets that
are sampled, and therefore aren’t deterministic, and the error that is incurred
when we make approximations of the underlying distribution. These include the
Vapnik-Chernovenkis (VC-) dimension [114] which gives us a tool for measure
data complexity; that is, how quickly does the uncertainty in our learning
problem reduce as we increase the size of the dataset.

36 Tasks and Spaces of Tasks Chapter 2

Explicit structure is key to transfer. A key benefit to Definition 2.2.4 is
when thinking about problems of transfer. Often in the literature, problems
of transfer are relegated to a separate subfield, with many names such as
transfer learning, meta learning, domain adaptation, etc. As we will see in
Chapter 6, problems of transfer are, in essence the application of ML to single
task problems, but where the structure is on a higher, hierarchical level. In
Section 2.6, we see that structure maps can be used to define a strict notion of
variations between tasks. These are particularly useful for interpreting transfer
in ML problems.

Elegance of philosophical expression. We must also confess that our pri-
mary motivations were, among others, philosophical and ontological. Definition
2.2.4 was designed to invoke a different point of view regarding problems of
ML, where more emphasis was put into reasoning about what we wanted to
learn, rather than how we can learn it. Of course, these notions aren’t mutually
exclusive, and one isn’t more or less important than the other. Traditionally
however, ML has dealt mostly with, to great success, the latter. Thus, we
wished to fill in this gap. We expect that emphasizing a different aspect of
the problem would help in gaining novel insights, most likely in the long run.
A particular area that we believe will greatly benefit from approaching ML
through our lens is in the interpretability of learned solutions.

Despite this long term view, there are some immediate practical merits to
Definition 2.2.4, especially when working with problems involving transfer. In
[7], we see a mathematical analysis of transfer that applies the methods of PAC
learning to problems involving multiple tasks. In this, several bounds on the VC-
dimension were derived without explicitly handling the relationships between
tasks. Then in [10, 8, 9], these bounds were tightened by considering the
structure of the learning task explicitly. The authors described a relationship
between tasks in terms of an action of a group (see Appendix A.4).

Laying a concrete foundation. These definitions provide us with a robust
and elementary foundation from which to build analyses of ML problems and
techniques. The structural view expresses key components of a ML problem
as maps that we can vary against, when choosing and developing models, loss
functions and learning algorithms.

In addition to aiding the development of these ideas, we expect that this view
will also help in communicating such ideas. When written in this way, the key
arguments and assumptions are laid bare, for anyone subscribing to this view
to easily understand and scrutinize.

Understanding the structure of learning is important. Recent trends
in research also show a growing interest, and benefit of being more explicit
about the structure of ML problems. Perhaps the best example of this is in
Convolutional Neural Networks (CNNs). CNNs are foundational to successes
in computer vision. As a model, a CNN is quite simple, which allowed it to
be attempted in a variety of problems. Recently, it was understood that the

Section 2.5 Examples of tasks in Machine Learning 37

key property that made a CNN so useful in problems involving images was a
convolutional layer’s property of being translation equivariant [20].

This, in retrospect, is an obvious notion; if we were to translate a object in
an image, we shouldn’t expect any salient changes in the interpretation of
the image (this is especially true in classification problems). Once this was
identified, it became possible to apply convolutional methods to more exotic
spaces, starting with spheres [21], where the equivariance was w.r.t. a different
group (SO(3)), acting on a sphere. The changes here aren’t trivial; for one,
the topology of a sphere is very different to the topology of R2. More recent
work [18] has generalised this notion to a convolution on any (homogeneous)
space w.r.t. any appropriate action of a group.

[87] shows how to explicitly model properties that are experienced by physical
problems that fall under classical (lets say Newtonian) physics, namely the
fact that they obey the Principle of Least Actions [4]. In our previous work
[76], we did learning on multi-task reinforcement learning problems which were
known to have a particular structure regarding how tasks were distributed.

These examples show that explicit expressions of the structure has been useful.
Being explicit about the components of any theory or idea is always useful for
understanding, if one ignores that being overbearingly so can hurt the barrier
to entry. Often the discovery of new ideas, particularly in science, is initiated
by attempts at trying to find the explicit structural components that can
explain some phenomena. In ML, the ideas of implicit gradient regularisation
[5, 96], and flat minima [41, 42, 24, 17] were identified when studying the
generalisation properties of deep learning. Thus, in the present thesis, we wish
to explore the structure of ML, with a particular emphasis on transfer.

2.5 Examples of tasks in Machine Learning

In order to aide in the understanding of Definition 2.2.4 of a task, we will
be restating the tasks provided by typical ML problems in the following. It
should be noted that the term ML problem is used to classify names such as
supervised learning, unsupervised learning, reinforcement learning, and the like.
The task of such a problem encompasses a system that contains some unknown
structure map that we wish to learn. As expected, the task does not tell us
anything about the models, loss functions nor learning algorithms used to solve
these problems.

2.5.1 Task of Supervised Learning
Supervised learning is perhaps the easiest to express in our definition. Typically,
it is defined for ML problems where labels are known; this is best contrasted
with unsupervised learning. More formally the task of a supervised learning
problem is,

38 Tasks and Spaces of Tasks Chapter 2

Definition 2.5.1 (Supervised Learning Task (Typical)).Definition of a
Supervised Learning
Task (Typical)

A supervised learning
problem is a ML task where the data is assumed to have been generated from a
map of the form,

f : X → Y, (2.8)

where X and Y are the input and output spaces respectively. Furthermore, the
data are of the form (x, y), where x ∈ X and y ∈ Y , and y = f(x).

Supervised learning includes problems of regression and classification, where
the differences are in the output space Y ; Y is discrete or categorical in
classification. A typical regression problem was given in Equation (2.1), where
X,Y = R. A classification problem can be where X is a space of matrices
Rm×n corresponding to images, Y is {cat,dog}, and f is a map that identifies
whether the subject of an image is a cat or a dog.

To cast the task of supervised learning in terms of Definition 2.2.4, we must
identify the system and data-generating process it composes of.

Definition 2.5.2 (Supervised Learning Task).Definition of a
Supervised Learning
Task

A supervised learning (SL)
task, denoted by tSL, is a task that, the components of which at least satisfy the
tuple ((RSL,SSL),PSL), where,

RSL = {X,Y },

SSL = {f : X → Y },

and,

PSL : X ×X → X × Y
(x, x) 7→ PSL(x, x) = (idX(x), f(x)).

Thus, we see that the structure that we are trying to learn, as encoded in the
data-generating process, is the relationship between X and Y , as given by f . As
we mentioned in Section 2.1, a task could contain structure that is not utilised
in the data-generating process, indicating the intent of the learning problem.
Therefore, a supervised learning task could contain additional structure that
isn’t interesting.

The system to which Equation (2.1) belonged to could have been Equation
(2.3). It’s data-generating process would have simply been,

Preg : X → X × Y (2.9)
x 7→ Preg(x) = (x, ax+ b). (2.10)

2.5.2 Task of Reinforcement Learning
Reinforcement learning (RL) is a genre of ML that deals with the problem of
decision making [104]. A typical scenario is the pendulum swing-up problem
that is depicted in Figure 2.2. The pendulum of a fixed mass and length starts
at its lowest position. Then, given some constrained torque that can be applied

Section 2.5 Examples of tasks in Machine Learning 39

τ

m

l

π∗

θ

θ̇

Figure 2.2. The pendulum problem is to find an optimal policy π∗ that applies
torque τ at the pivot of a pendulum of mass m and length l to move it from its
lowest position to its highest position, and to balance it there. The optimality
of the policy is determined by some reward function.

at the pivot, the goal of RL is to find a strategy of applying a sequence of
torques to move the pendulum to its highest position, and then balance it
there. The constraint on the torque is limited to ensure that the pendulum
must be swung up. Of course, the pendulum is assumed to act under gravity,
and is usually not affected by any resistances (such as friction or air resistance).
A RL problem is typically modelled in terms of a Markov Decision Process
(MDP). An example graph of a MDP is shown in Figure 2.3b. A MDP in RL
is typically specified by a tuple M = (S,A, T ,R, γ), which consists of a state
space S, action space A, transition dynamics T : S ×A → S, reward function
R : S → R7 and a discount factor γ ∈ [0, 1]8.

Components of RLThe state space denotes the possible states that the environment can be in,
and the action space tell us the possible actions that the agent can make in this
environment. The transition dynamics tell us how the present state changes
given a particular action. The action is chosen using a policy π : S → A that
describes the strategy that is taken, since it tells us the action to carry out
given the current state. Finally, the reward function tells us how good arriving
at the current state of the environment is. A key assumption that is made
here, which is also the etymology of Markov in MDP, is that the system is
setup such that all relevant information is given in the current state of the
environment. That is, knowledge of previous states does not make a difference.
Furthermore, time is often assumed to be discrete.

7Some works denote the reward function as R : S × S × A → R. In the present work, we
will use the simpler form written in the main text, as it doesn’t change the more abstract
discussions made.

8If the MDP is defined to be finite, the discount factor doesn’t need to be specified.

40 Tasks and Spaces of Tasks Chapter 2

Environment

Agent

action
state

reward

(a) The typical reinforcement learn-
ing loop. The environment provides
information regarding its state and
reward to an agent.

s0

a0

s1

r1

a1

π π

T T

R

...

r0

R

(b) An example of a possible Markov
Decision Process that is used in re-
inforcement learning.

Figure 2.3. Graphical representations of reinforcement learning.

In the case of the pendulum problem, the state space is often the angle made
by the pendulum and the angular velocity of the pendulum. The angle can
be measured from the goal, as in Figure 2.2. The action space is the size
of the torque. The transition dynamics are the dynamics of the pendulum.
However, since time is often discretised, these dynamics are often the Euler
approximations of the true differential equations that describe the motion of
a pendulum, and tell us how the angle and angular velocity change given a
particular torque. The reward function can be the sum of the current angle
and angular velocity (that is, the norm of the current state vector). The goal of
the RL problem is to find an optimal policy π∗ that solves the decision making
problem posed by the MDP. This decision making process is defined w.r.t. a
value function, which is defined as,

Definition 2.5.3 (Value Function).Definition of a Value
Function

Given a MDP, M = (S,A, T ,R, γ), and
a policy π, the value function Vπis a map:

Vπ : S → R

s0 7→ Vπs0 =
∞∑

t=0
R ◦ T

(
st, π(st)

)
γt

Remark 2.5.1: RL is typically defined probabilistically; in the present work,
we will be making definitions that are purely deterministic. •

The value function Vπ(s0) evaluates how good a current state s0 is w.r.t. the
potential total discounted reward that could be achieved following a particular
policy π. The total discounted reward is also the return. The optimality of
a policy is determined by whether it maximises its associated value function.
That is,

π∗ = arg max
π

Vπ(s0). (2.11)

Thus, in the case of the pendulum problem and its reward function, we see
that the optimal policy must also minimise the time that it takes to swing up.

Section 2.5 Examples of tasks in Machine Learning 41

The typical data of an RL problem is given in the form of a trajectory. A
trajectory is a rollout of the MDP of a RL problem, and is expressed in terms
of a collection of transitions, which is defined as,

Definition 2.5.4 (Transition). Definition of a
Transition

For a given MDP M = (S,A, T ,R, γ), and
policy π, a transition is a tuple (s, a, s′, r) ∈ S ×A× R× S, where,

a = π(s),
s′ = T (s, a),
r = R(s).

The product space S ×A× R× S is denoted by ORL.

A transition gives us information regarding a single step in the MDP. As such,
a transition can be indexed by N, where for a time step t ∈ N, there is a
transition (st, at, st+1, rt). A collection of transitions that are ordered by time
is called a trajectory. In order to formalise a trajectory, it is useful to define a
map as follows,

Definition 2.5.5 (Single rollout). Definition of a Single
rollout

Given a MDP M = (S,A, T ,R, γ), and
policy π, a single rollout is a map fπ,1

roll that is defined as;

fπ,1
roll : S → ORL

s 7→ fπ,1
roll(s) = (s, a = π(s),R(s), T (s, a)).

A modified single rollout f1
roll can also be defined as,

fπ,1
roll : ORL → ORL

(s, a, r, s′) 7→ fπ,1
roll : (s, a, r, s′) = (s′, a = π(s′),R(s′), T (s′, a)),

to take in transitions and output the next transition.

Notation. Note that the notation (s,a = π(s),R(s),T (s, a)) here implies
that when we invoke T (s, a), we are using the same output of π(s) that
was created at a = π(s), rather than invoking the policy again. This isn’t
important when the MDP is deterministic. However, when it is probabilistic,
this means that we aren’t sampling from the induced measure over actions
twice, but rather recording and using the same single sample.

Such a rollout can be composed to create a t−rollout, which records rolling
out the MDP up to a time step t ∈ N. That is,

Definition 2.5.6 (t−rollout). Definition of a
t−rollout

Given a MDP M = (S,A, T ,R, γ), and policy
π, a t−rollout, for t ∈ N is a map fπ,t

roll that is defined as,

fπ,t
roll : S → O⊺

RL

s0 7→ fπ,t
roll(s) = ((s0, a0, r0, s1), (s1, a1, r1, s2), ..., (st, at, rt, st+1)),

42 Tasks and Spaces of Tasks Chapter 2

where,

(s0, a0, r0, s1) = fπ,1
roll(s0),

(s1, a1, r1, s2) = fπ,1
roll(s0, a0, r0, s1),

(st, at, rt, st+1) = fπ,1
roll(st−1, at−1, rt−1, st).

A rollout then is the application of a single rollout ad infinitum,

Definition 2.5.7 (Rollout).Definition of a
Rollout

Given a MDP M = (S,A, T ,R, γ), and policy π,
a rollout is a map fπ

roll, which is a ∞−rollout.

It should be noted that while the transition dynamics and reward functions
are explicitly described in its formulation, RL assumes that we are not given
access to these9. That is, the optimal policy must be identified merely using
data given in the form of trajectories of states, actions and rewards. This leads
to many different ways of solving the RL problem. Model free methods, such
as Q-learning [120] for example, immediately try to learn the policy, while
model-based methods, such as PILCO [22] learn a model of the transition
dynamics, and uses that to learn a policy through simulation. Off-policy
methods [120, 104] use data generated from any policy, whereas on-policy
methods [3] use data generated from the current policy. RL can be further
classified into value-based methods (such as Q-learning) which try to learn
a form of the problem’s optimal Value function explicitly, or policy-search
methods [105], such as REINFORCE [123], explicitly model and optimise the
policy. In value-based methods, the policy is derived from the value function.

A structural definition of the task of a RL problem must include the ability to
generate trajectories. Furthermore, its relata must contain the action space,
state space, and R since transition dynamics and reward function depend on
these. Thus,

Definition 2.5.8 (Task of Reinforcement Learning).Definition of a Task
of Reinforcement
Learning

A reinforcement learning
(RL) task, denoted by tRL is a task ((RRL,SRL),PRL), where,

1. S,A,R, {γ},Π ∈ RRL, for Π := {π|π : S → A},

2. T ,R ∈ SRL such that,

T : S ×A → S
R : S → R,

3. and, for the MDP defined by M = (S,A, T ,R, γ), the data-generating
process can be written as,

PRL : S ×Π→ O∞
RL

(s0, π) 7→ PRL(s0, π) = fπ
roll(s0).

9If these are known, the setup is called a planning problem.

Section 2.6 Spaces of Tasks 43

Π is a space of possible policies. For example, this could be the space of all
maps from the state space to the action space. From this definition, we see
that the particular structure of a RL task is given by the transition dynamics,
the reward function and the discount factor.

As a final note, the typical definition of a RL problem is made probabilistically.
The value function is defined as an expectation over possible trajectories.

2.6 Spaces of Tasks
An important aspect of the structural definition of a task is that it explicitly
outlines the maps that are interesting to us, regardless of the type of a ML
problem. From this, we can describe variations to a task in terms of variations
to the structure maps. All such variations can be collected together in a space
of tasks.

As an example, consider the regression task t that was described in Section
2.5.1, the definitions of which we repeat below.

treg = ((Rlin,Slin),Preg), (2.12)

where,

Rreg = {R},
Sreg = {f : R→ R; f(x) = ax+ b, idR : R→ R},
Preg : R→ R× R

x 7→ Preg(x) = (x, f(x)),

where a, b ∈ R. Since the structure map f is specifically defined for an a and b,
we can vary the task by changing these values. That is, we can, as an example,
define a task ta1,b2 with a structure map f = a1x+ b1, and a task ta2,b2 with a
structure map f = a2x+ b2, where a1 ̸= a2 and b1 ̸= b2. We can do this for
any value of a, b from R. In varying this way, the collection of all such maps is
the space of affine maps between R and R.

We can formalise notions of variations of systems, and by extension tasks using
a structural theory too.

Variations of Systems. Consider the variations to the structure maps above.
Since we varied the structure maps affinely, the collection of structure maps is
a space of affine maps Faff = {fa,b : R → R; fa,b(x) = ax + b

∣∣ a, b ∈ R}. We
can describe Faff in a system:

zaff = (Raff ,Saff), (2.13)

where,

Raff = {R,Faff},
Saff = {f : Faff × R→ R; (fa,b, x) 7→ f(fa,b, x) = fa,b(x) = ax+ b}.

44 Tasks and Spaces of Tasks Chapter 2

f is an evaluation functional that evaluates its first argument at the point
given by its second argument. R is the appropriate vector space system. A
system with this format is a system of functions.

Definition 2.6.1 (System of functions).Definition of a
System of functions

A system (R,S) is called a system
of functions if:

a) R contains at most one collection of F , X, Y , where any f ∈ F is a map,

f : X → Y,

b) for F , X, Y ∈ R, as above, there exists an evaluation functional fF ∈ S,
where,

fF : F ×X → Y

(f, x) 7→ fF (f, x) = f(x).

A system of functions can contain additional structure maps. As another
example, consider a system of continuous functions between topological systems
((X,OX),SX) and ((Y,OY),SY);

zcon = (Rcon,Scon), (2.14)

where,

Rcon = {X,Y,Fcon},
Scon = {fF : F ×X → Y,

conFcon : Fcon ×OY → {1}
(f, UY) 7→ conF (f, UY) = 1OX

◦ preimf (UY) = 1.

conFcon constrains the functions in Fcon to satisfy the requirements of a con-
tinuous function.

We constrain a system of functions to contain a single function space for
simplicity. Furthermore, X and Y generally describe the domain and codomains
of the functions in F ; we will assume that a system of functions can always be
defined such that these spaces can be written in this way.

Systems of functions can be used to derive systems with structures that are
contained in the function spaces F of the systems of functions;

Definition 2.6.2 (Derived system).Definition of a
Derived system A system (Rder,Sder) is derived from systems of functions {(Ri,Si)}i∈I if:

a) ∀(Ri,Si) ∈ {(Ri,Si)}i∈I , with Fi, Xi, Yi ∈ Ri, where (fi ∈ Fi) : Xi →
Yi,

Xi, Yi ∈ Rder,

and,

Section 2.6 Spaces of Tasks 45

b) ∀(Ri,Si) ∈ {(Ri,Si)}i∈I , with Fi, Xi, Yi ∈ Ri, there exists a single
fi ∈ Fi, and a single, not necessarily unique10 fder ∈ Sder that can be
decomposed as,

fder = ... ◦ fi ◦ ...

Further, we say that (Ri,Si) affects the derived system at fder ∈ S by
fi ∈ Fi.

Thus, a derived system is a tuple,(
(Rder,Sder), {(Ri,Si)}i∈I

)
.

Condition (b) means that the system of functions is used to construct the
structure of the derived system via function composition. A system can be
derived from multiple systems of functions, even repeatedly by the same system
of functions, as long as each affects a unique position of the decomposition of
a single structure map. For example, the system (Rlin,Slin) is derived from
the system of functions zaff , since one of its structure maps is an element of
the system in Raff .

Crucially, a derived system provides a principled mechanism for defining
variations of a system.

Definition 2.6.3 (Variation of a Derived system). Definition of a
Variation of a

Derived system

Suppose we are given a
derived system

(
(Rder,Sder), {(Ri,Si)}i∈I

)
, with system z = (Rder,Sder) that

is derived from systems of functions {(Ri,Si)}i∈I .

Further, suppose that (Ri,Si) ∈ {(Ri,Si)}i∈I affects z at fder ∈ S by fi ∈ Fi.
That is,

fder = fpre ◦ fi ◦ f suf ,

for some prefix and suffix functions fpre and f suf respectively.

Then, a variation z′
(Ri,Si) of z w.r.t. (Ri,Si) ∈ {(Ri,Si)}i∈I is a new derived

system (R′
der,S

′
der) where,

a) R′
der = Rder,

b) ∃f ′
der ∈ S′

der, where for (f ′
i ∈ Fi) ̸= fi, can be decomposed as,

f ′
der = fpre ◦ f ′

i ◦ f suf ,

and,

c) S′
der\{f ′

i} = Sder\{fi}.

In words, a variation of a derived system is a change to its structure, relative to
a particular system of functions that was used to derive it. When we described
the affine space of functions above, there was a sense of structural similarity

10We mean that a single structure map could be affected by different systems of functions.
However, each system of functions affects a single structure map.

46 Tasks and Spaces of Tasks Chapter 2

between each particular variation. This definition formalises the notion of
structural similarity in terms of the system of functions; in Equation 2.13, we
could have varied f(x) = ax+ b as f ′(x) = ax+ b+ sin(c), where c ∈ (0, π).
In this case, the system of functions used is very different.

A derived system can be derived from many systems of functions, and each
such system can vary the derived system. Thus, a product space Vzder of all
possible variations of a derived system zder is,

Vzder = ...×Fi × ...

for i ∈ I.

For v ∈ Vzder , a system that has this particular variation is denoted by zv
der.

zv
der is the result of a combination of individual variations w.r.t. each system of

functions it is derived from. However, there can be situations where two such
total variations result in equal derived systems, in that their structures are
equal to each other. Thus, an equivalence relation ∼zder can be defined, where
for v1, v1 ∈ Vzder ,

v1 ∼zder v2 ⇐⇒ zv1
der = zv2

der. (2.15)

Then,

Definition 2.6.4 (Total Variation Space of a Derived System).Definition of a Total
Variation Space of a
Derived System

Given a
derived system zder =

(
(Rder,Sder), {(Ri,Si)}i∈I

)
, the total variation space

Vzder is the quotient space,

Vzder = Vzder/ ∼zder .

A particular v ∈ V is called a total variation11, and the system derived from v
is denoted as zv

der.

Variations of Tasks. The additional property that a task has, compared to a
system is the data-generating process. Furthermore, the structure of a task is
stripped to only contain the structure maps that are used in its data-generating
process. Thus a task can be derived from systems of functions in the same way
as a system, if the systems of functions under consideration affect the structure
of the task in a similar manner. We will denote a derived task as the tuple,((

(Rder,Sder), {(Ri,Si)}i∈I
)
,P

)
. (2.16)

That is, it is composed of a derived system z =
(
(Rder,Sder), and a data-

generating process P that is applicable to this system.

Variations of derived tasks are trickier. From a machine learning perspective,
the key aspects of a task are captured by its data-generating process. Thus, two
tasks are equal to each other, if their data-generating processes are functionally
equal12. Simply comparing the structures of tasks is insufficient, since the

11This is not the statistical notion of a total variation.
12That is, their outputs match for all values of their inputs (in the deterministic case), or

their induced measures are functionally equal (in the probabilistic case).

Section 2.6 Spaces of Tasks 47

composition of structure maps could lead to additional equivalences. As with
derived systems, the changes to variations of tasks are in their structures,
which in turn affect the data-generating processes. There are no changes made
to the relata or their representations. We write the product space of all task
variations Tz as,

Tz = ...×Fi × ...

for i ∈ I. If tt denotes the derived task for the variation t ∈ Tz, then the
equivalence ∼t between two such variations t1, t2 ∈ Tz is,

t1 ∼t t2 ⇐⇒ Pt1 = Pt2 , (2.17)

where Pti denotes the data-generating process of the derived task tti . Then,

Definition 2.6.5 (Task Space). Definition of a Task
Space

Given a derived system,

zder =
(
(Rder,Sder), {(Ri,Si)}i∈I

)
,

and a valid data-generating process P, the task space Tz,P is the quotient space,

Tz,P = Tz/ ∼t .

The key difference between a task space and the total variation space of a
derived system is that the equivalence relation is different.

Consider that we are given a task space Tz,P. Each variation in Tz,P uniquely
identifies a task. This is because of the quotient we took in Definition 2.6.5.
Thus, If we agree on z and P, then in this context, a task t can be defined as
being an element of Tz,P.

2.6.1 Task spaces as Smooth Manifolds
The intrinsic structure of a space of tasks must depend on the intrinsic structures
of the systems of functions that were used to derive it, as well as the induced
equivalence relation. For example, consider again the task treg, as per Equation
(2.12). If this task was derived and varied w.r.t. the affine system in Equation
(2.13), then the task space Treg itself is given by R2, since any (a, b) ∈ R2

defines a unique structure map, and for any (a1, b1), (a2, b2) ∈ R2, where at
least a1 ̸= a2 or b1 ̸= b2, we can derive a unique task.

By saying this, we also imply that Treg also carries with it the topological
properties of R2. As a counterexample, consider the supervised learning task
of a shifted sinusoid tsin,

tsin = ((Rsin,Ssin),Psin),

where,

Rsin = {R, [−1,−1]},
Ssin = {fsin : R→ [−1,−1]; fsin(x) = sin(x+ a),
Psin : R→ R× [−1,−1]

x 7→ P(x) = (x, fsin(x)).

48 Tasks and Spaces of Tasks Chapter 2

Due to the periodicity of the sin function, for any a ∈ R, we have that the task
for which ak = a+ 2kπ, for k ∈ Z, is equivalent to the original task, since their
respective data-generating processes cannot distinguish between them. The
task space Tsin is the topological space given by the circle S.

In both cases, the resulting task space can also be represented by a topological
manifold. In the present work, we consider task spaces that can be represented
by smooth manifolds; these are topological manifolds that have a smooth
structure. Our reasons for making this assumption are:

Topological and Smooth Structures. When we start discussing problems
of transfer, it will become evident that having a notion of a topology on a
space of tasks is useful. A topology allows us to describe what neighbourhoods
of tasks would look like. In addition, it will give us a notion of continuous
transformations of tasks. The topological structure of a task space can be
derived from its definition; that is the quotient topology of the product topology
over the functions spaces that derive it; this is assuming that the function
spaces themselves are equipped with topological structures.

In later sections, we will see that it might be necessary to take derivatives,
particularly when discussing algorithms for learning to transfer. The smooth
structure of a smooth manifold affords us this luxury.

Finiteness. The dimensionality of the manifold describes the finite number of
degrees of freedom we have to move in to describe different tasks in the task
space. This means that we will be considering task spaces that can be varied
along a finite number of directions. This is opposed to a universal set of tasks
that contains all possible learning tasks; we believe that this is too general to
consider13.

The finiteness of the task space could be thought of as pathological; for example,
it is possible (albeit unwieldy) to consider the space of all continuous functions
as a task space. However, we propose that given some useful structure, and
therefore bias, we will often find subspaces of this full set which are indeed
finite dimensional, and form a topological manifold. Certainly, it is possible to
find such subspaces, and to therefore restrict our attention to solving learning
tasks from such spaces.

We mentioned in Section 2.6 that the elements of a task space themselves
provide the most fundamental level of structure, since they are chosen from the
set of all possible tasks to belong to the given task space T. For example, if we
define the task space to be all regression tasks generated from scalar valued
truncated Fourier series on R, we immediately note there is a constraint (and
therefore structure) that defines the task space.

13There does exist an obvious counter example to this however: a reasonable set of tasks
that one could consider in a regression task is the set of all continuous functions. This is
technically infinite dimensional. While we believe that it is possible that our theory could be
extended to this case, we will restrict ourselves to the finite dimensional scenario for the time
being.

Section 2.6 Spaces of Tasks 49

Independence of representation. In Example 5.1.5, we show that a smooth
(topological) manifold is a natural representation of certain topological spaces.
An important note here is that any theories that we would write w.r.t. this
space are independent of this representation. This is good for us, since we
can then think about task spaces abstractly, and then realise them using an
appropriate atlas, when necessary.

Remark 2.6.1: From Remark 2.1.1, the space of tasks can itself be seen as a
system, since we have now assumed that it is a smooth manifold. •

50 Tasks and Spaces of Tasks Chapter 2

This page was left intentionally blank.

51

Chapter 3

Models and Symmetries

A task is a structured system in a space of tasks with some unknown
structure that we wish to learn. To do so, we need to describe this

structure meaningfully. A parametric model1 defines a class of input-output
maps in terms of a model architecture and a parameter space. Together, these
provide us with a language to describe our structure.

In this chapter, we will be defining these terms. In addition, we will see how
to create a model space which accounts for any symmetries in the generated
input-output maps. We will investigate the symmetries of a simple neural
network, and conclude with a brief discussion of a novel tool that can help us
visualise the symmetries of a neural network.

3.1 Model Architectures
Parametric models are etymologically based on a space of parameters Θ.
Along with a parameter space, a parametric model is equipped with a model
architecture.

Definition 3.1.1 (Model Architecture). Definition of a Model
Architecture

Given a parameter space Θ, and
spaces X and Y , a model architecture κ is a map,

κ : Θ×X → Y

(θ, x) 7→ κ(θ, x).

For a particular θ ∈ Θ, the map,

κθ : X → Y

x 7→ κθ(x) = κ(θ, x),

is called the architecture map of θ.

The model architecture provides a way of constructing an input-output map
between two spaces, using a parameter space Θ. For a particular θ ∈ Θ, the

1Non-parametric models are trickier to describe, and will therefore be deferred to future
work.

52 Models and Symmetries Chapter 3

architecture map κθ is the particular input-output map that is induced by the
model architecture.

Example 3.1.1 Linear architecture: Consider Θ = Rd. For input space Rd

and output space R, we can define an architecture κlin which creates linear
maps as,

κlin : Rd × Rd → R
(θ, x) 7→ κlin(θ, x) = θ⊺x.

(3.1)

▲

Example 3.1.2 Sinusoidal architecture: Consider Θsin = R2. An example
architecture on this space, for input space R and output space R is the
architecture κsin,

κsin : R2 × R→ R
((a, b), x) 7→ κsin((a, b), x) = a+ sin(x+ b).

(3.2)

▲

Example 3.1.3 Neural Network architecture: In this example, we will
construct a single layer, 2-node neural network architecture. The non-linearity
we choose is the Rectified Linear Unit (ReLU), which is given by:

σReLU : R→ R

x 7→ σReLU(x) =
{
x if x ≥ 0
0 otherwise

.
(3.3)

Notation. If we write σReLU(v), where v ∈ Rd, then σReLU is applied
point-wise to each coordinate. That is, for (v1, ..., vd) = v ∈ Rd, where
vi ∈ R,

σReLU((v1, ..., vd)) = (σReLU(v1), ..., σReLU(vd)).

Suppose that X = Rd and Y = R. Then, ΘReLU = Rd × Rd × R× R, giving
κReLU as,

κReLU : ΘReLU × Rd → R
(v1,v2, w1, w2, x) 7→ κReLU(v1,v2, w1, w2, x)

= w1σReLU(v1
⊺x)︸ ︷︷ ︸

node 1

+w2σReLU(v2
⊺x)︸ ︷︷ ︸

node 2

.
(3.4)

Other neural network architectures can be defined by varying the number of
layers, nodes, and the non-linearity that is used; standard non-linearities include
the tanh function and the sigmoid function. These networks are classified as
fully-connected networks; more specialised neural network architectures include
the Convolutional Neural Network (CNNs) [57], Residual Networks (ResNet)
[38], and Recurrent Neural Networks (RNNs) [83]. ▲

Section 3.2 Symmetries in Architectures 53

3.2 Symmetries in Architectures
Given a model architecture, with its associated input and output spaces, and
its parameter space, a question that can be asked is whether each parameter
θ ∈ Θ uniquely identifies an input-output map.

Definition 3.2.1 (Equivalence of Parameters). Definition of a
Equivalence of

Parameters

Given a model architecture
κ : Θ×X → Y , an equivalence relation ∼κ is defined between θ1, θ2 ∈ Θ. That
is,

θ1 ∼κ θ2 ⇐⇒ κθ1(x) = κθ2(x), ∀x ∈ X.

The question of whether architecture maps are equivalent is called the identifi-
ability problem, and has been studied for neural networks [103, 59, 116]. In
example Example 3.1.1, each parameter vector produces a unique input-output
map; this follows from basic linear algebra. However, looking at Examples
3.1.2 and 3.1.3, this is clearly not true. In Example 3.1.2, for (a, b) ∈ Θsin, we
know by the periodicity of the sin function that,

κsin((a, b+ 2kπ), ·) = κsin((a, b), ·),

for k ∈ Z.

In the case of κReLU, non-identifiability occurs in three respects. Firstly, σReLU
obeys non-negative homogeneity [24]. That is, for c ∈ R+\{0},

σReLU(cx) = cσReLU(x), ∀x ∈ R. (3.5)

Thus, in the case of ΘReLU, we have that for any c1, c2 ∈ R+\{0},

κReLU(c1v1, c2v2, w1, w2, x) = w1σReLU((c1v1)⊺x) + w2σReLU((c2v2)⊺x)
= w1σReLU(c1(v1

⊺x)) + w2σReLU(c2(v2
⊺x))

= c1w1σReLU(v1
⊺x) + c2w2σReLU(v⊺x)

= κReLU(v1,v2, c1w1, c2w2, x), ∀x ∈ X.

Equivalently,

κReLU(v1,v2, w1, w2, x) = κReLU(c1v1, c2v2, c
−1
1 w1, c

−1
2 w2, x), ∀x ∈ X.

Notation. Since for i ∈ {1, 2}, ci ∈ R, the notation civi denotes an elemen-
twise multiplication of a scalar and a vector.

The second source of non-identifiability is due to the fact that addition is
associative. That is, we have that,

κReLU(v1,v2, w1, w2, x) = κReLU(v2,v1, w2, w1, x), ∀x ∈ X

54 Models and Symmetries Chapter 3

since,

κReLU(v1,v2, w1, w2, x) = w1
⊺σReLU(v1

⊺x) + w2
⊺σReLU(v2

⊺x)
= w2

⊺σReLU(v2
⊺x) + w1

⊺σReLU(v1
⊺x)

= κReLU(v2,v1, w2, w1, x), ∀x ∈ X.

Thus, nodes can be permuted.

Finally, the third source occurs when any of v1,v2, w1, or w2 is equal to zero.
If w1 = 0, then the input-output map for any v1 ∈ Rd is non-identifiable. This
is similarly true for any w1 ∈ R if v1 = 0. This can be extended to the pair v2
and w2. This source is due to the reducibility [103] of the network when any of
v1,v2, w1, or w2 is equal to zero, or when v1 = cv2, for c ∈ R+\{0}.

A network is said to be reducible if there is a smaller network (in the sense of
the number of nodes) that is equivalent to it. For example, when w1 = 0 or
v1 = 0, we can effectively remove node 12 since,

κReLU(v1,v2, 0, w2, x) = κReLU(0,v2, w1, w2, x)
= w2σReLU(v2

⊺x), ∀x ∈ X.

Furthermore, if v1 = cv2, for c ∈ R+\{0}, then, due to the non-negative
homogeneity,

κReLU(v1,v2, w1, w2, x) = κReLU(cv2,v2, w1, w2, x)
= cw1σReLU(v2

⊺x) + w2σReLU(v2
⊺x)

= (cw1 + w2)σReLU(v2
⊺x), ∀x ∈ X,

where we can now have a single node with parameters (v2, cw1 +w2). Similarly,
we could also have a single node (v1, w1 + c−1w2).

Some of these symmetries can be visualised in Figure 3.1.

Knowing the unique architecture maps of a given model architecture is useful
when attempting to study models for machine learning. This becomes especially
clear when we wish to place additional structures on model architecture, as we
will see in Section 7.1. Thus,

Definition 3.2.2 (Parametric Model Space).Definition of a
Parametric Model
Space

Given a model architecture
κ : Θ×X → Y , the parametric model space Θκ is,

Θκ = Θ/ ∼κ,

where ∼κ is the equivalence between parameters in Θ, w.r.t. the architecture.
2It is interesting to note that in a sense, residual networks are specially designed to allow

this. A ResNet makes it easier for nodes to learn identity maps [38], by allowing non-linear
components to drop to zero, thus effectively removing this node, and allowing only the
residual component to carry on.

Section 3.3 Parametric model spaces as smooth manifolds 55

0 vi

wi

(a) i ∈ {1, 2}. Each connected line
depicts a set of equivalent parame-
ter values due to non-negative ho-
mogeneity. Both axes represent the
reducibility symmetry due to any of
v1,v2, w1, w2 = 0.

(v1, w1)

(v2, w2)

(b) Swapping weights along the
dashed line yields equivalent pa-
rameter values. Furthermore,
both dotted and dashed lines de-
note reducibility symmetries due to
(v1, w1) = (v2, w2).

Figure 3.1. Visualisation of the symmetries of a single layer, 2 node, ReLU
neural network, as in Example 3.1.3.

A parametric model space is a space of parameters that correspond to unique,
identifiable architecture maps. As with spaces of tasks, in the present work, we
will express parametric model spaces as smooth manifolds.

The question of whether this is possible is closely tied to symmetries in the
architecture. When there are no symmetries, such as in the parametric model
space of Example 3.1.1 is simply Rd, the parameter space and parametric
model space are isomorphic. If they are not, it becomes more complicated, as
we will see.

3.3 Parametric model spaces as smooth
manifolds

It is typical to consider symmetries in terms of groups and group actions.
A symmetry group of space X is a group GX , and a (left) group action
ρGX

: GX ×X → X on X that, for each g ∈ GX specifies a transformation,

ρg : X → X

x 7→ ρg(x) = ρGX
(g, x)

on X that obeys the consistency requirements of a group action. That is, for
g1, g2 ∈ GX ,

ρg2 ◦ ρg1(x) = ρg2g1(x).

Points on X are said to be symmetric to each other if there exists such a
transformation that maps them to each other; they are said to be in the same

56 Models and Symmetries Chapter 3

orbit. Thus, the group action defines an equivalence relation which is equivalent
to the equivalence relation ∼κ.

The parametric model space of a model architecture is then the orbit space of
the group action of the symmetry group. Thus, the question of whether the
parametric model space is a smooth manifold is a question of whether this orbit
space is a smooth manifold. The following theorem, from [58, Chapter 21]3
can help.

Theorem 3.3.1.Quotient Manifold
Theorem
(Theorem 21.10 [58])

Suppose G is a Lie group acting smoothly, freely and properly
on a smooth manifold X. Then the orbit space X/G is a topological manifold
of dimension equal to dimX − dimG, and has a unique smooth structure.

This theorem implies that if we can show that the action of the symmetry
group is smooth, free and proper (see Appendix A.4 for definitions), then
the resulting orbit space can be given the structure of a smooth manifold.
For general model architectures, showing this could prove difficult, perhaps
impossible. However, it might be more reasonable to assume that there is
some submanifold of the parameter space on which the appropriate quotient
manifold exists, where the elements that are ignored have zero consequences4

to the purpose of learning. Furthermore, it is expected that the resulting space
will contain architecture maps that are very close in practical behaviour5 to
the points that we removed.

Symmetry group of
the Sinusoidal
Architecture

The symmetry group of Example 3.1.2 is the Lie group of the additive integers,
the action of which translates the parameter b by 2πk. That is,

Gsin = Z,
ρGsin : Gsin ×Θsin → Θsin

(k, (a, b)) 7→ ρGsin(k, (a, b)) = (a, b+ 2πk).

Each map ρk : R→ R; b 7→ ρk(b) = b+2πk, for k ∈ Z is clearly a diffeomorphism
on R. In addition, since Z is discrete, ρGsin is also smooth. According to the
definition of a proper action (Definition A.4.4), it suffices to show that the map
(k, (a, b)) 7→ (((a, b + 2πk)), (a, b)) is proper. By Proposition A.53(d) in [58],
because R2 × R2 is Hausdorff, and ρ−1

k is continuous, ρGsin is a proper action.
It is also clear that this action is free. Thus, the parametric model space for
κsin is a smooth manifold; in fact, this manifold is the cylinder space R× S1.
Since the dimension of Gsin is 0, the dimension of the parametric model space
should be 2, which is true for R× S1.

Symmetry group of a
Neural Network
Architecture

In Example 3.1.3, each symmetry we described forms its own group. In order
to account for pathological cases, we will remove all points in ΘReLU where any

3We have reproduced only the relevant parts of the theorem, and have slightly changed
the notation to match the present work.

4In the sense that, relative to stochastic gradient descent, they have zero measure.
5By practical behaviour, we mean that the differences, in the domain of X that we are

interested is negligible. Further, this means that for any arbitrary measure of closeness, we
can find an appropriate parameter value.

Section 3.3 Parametric model spaces as smooth manifolds 57

of v1,v2, w1, w2 = 0. Furthermore, we will remove all points where v1 = cv2
for some constant c ∈ R+\{0}. The following theorem is useful for the ensuing
discussion.

Theorem 3.3.2. Removing points in
ΘReLU maintains
diffeomorphisms

Given ΘReLU = Rd × Rd × R× R, let us denote,

ΘReLU = ΘReLU\(Θ0 ∪Θ=),

where,
Θ0 = {(v1,v2, w1, w2)

∣∣ v1,v2, w1 or w2 = 0}, and
Θ= = {(v1,v2, w1, w2)

∣∣ v1 = cv2,∀c ∈ R+\{0}}.

Under the subset topology, ΘReLU is an open submanifold of ΘReLU. Further,
suppose that,

f : ΘReLU → ΘReLU

is a diffeomorphism, and that,

f |ΘReLU
: ΘReLU → ΘReLU

is well-defined, and is a bijection. Then, it follows that f |ΘReLU
is also a

diffeomorphism.

Proof. To prove that ΘReLU is an open submanifold, it suffices to show that
ΘReLU is an open set in the standard topology of Rd × Rd × R× R. We know
that,

ΘReLU\(Θ0 ∪Θ=) = ΘReLU ∩Θ0
c ∩Θ=

c.

Notation. Θ0
c and Θ=

c denote the complements of their respective sets.

If we write (x1, ...x2d+2) ∈ (ΘReLU = Rd × Rd × R× R), then from inspection,

Θ0 =
2d+2⋃
j=1
{(..., xj , ...)

∣∣ xj = 0}.

Each such {(..., xj , ...)
∣∣ xj = 0} is a closed subset of ΘReLU. Since the finite

union of closed sets is closed, Θ0 is closed. Thus, Θ0
c is open.

Consider now, the space,

Θ∗
= = {(v1,v2, w1, w2)

∣∣ v1 = cv2,∀c ≥ 0}.

It is true that Θ∗
=\Θ= ⊂ Θ0. This is because,

(Θ∗
=\Θ=) ∪ {(0, 0, w1, w2)} = {(v1,v2, w1, w2)

∣∣ v1 = cv2, c = 0}
= {(0,v2, w1, w2)}
⊂ Θ0.

58 Models and Symmetries Chapter 3

Thus,
Θ0 ∪Θ= = Θ0 ∪Θ∗

=.

Θ∗
= is closed, since any convergent sequence in Θ∗

= must have its limit in Θ∗
=;

any sequence must be written as,

(v1, c1v1, w1
1, w2

1), ..., (vi, civi, w1
i, w2

i), ...

Since all values of v ∈ Rd, w1, w2 ∈ R are included in Θ∗
=, and c = [0,∞),

which is closed, all limit points are included. Therefore Θ∗
=

′ is open.

Thus, ΘReLU is an open set of ΘReLU, which provides us an open submanifold,
by restricting the charts of ΘReLU to ΘReLU. The inclusion map i : ΘReLU ↪−→
ΘReLU, is its smooth embedding.

In the second part, we know that for any p ∈ ΘReLU, there exists charts (U, ϕ)
where p ∈ U , and (V, ψ) where f(p) ∈ V , then, ψ ◦ f ◦ ϕ−1 is smooth. Then,
suppose p ∈ ΘReLU, and that i(p) = p. Then, (U ∩ΘReLU, ϕ|U∩ΘReLU

) is a chart
of ΘReLU. Similarly, we can write f |ΘReLU

(p) ∈ (V ∩ΘReLU), with ψ|V ∩ΘReLU
being its chart map.

Then, since i and f are smooth, we can state that,

ψ|V ∩ΘReLU
◦ f |ΘReLU

◦ ϕ−1|U∩ΘReLU
= ψ|V ∩ΘReLU

◦ f ◦ i ◦ ϕ−1|U∩ΘReLU
,

is smooth.

Finally, since f |ΘReLU
is bijective, and f is a diffeomorphism, a similar argument

can be made for the inverse being smooth. Thus, f |ΘReLU
is a diffeomorphism.

■

Remark 3.3.1: This version of the theorem is strong. It can be weakened,
where if f is smooth, or continuous, then f |ΘReLU

is smooth, or continuous. •

Theorem 3.3.2 tells us that despite the points we had removed, ΘReLU is
still a smooth manifold. Furthermore, any diffeomorphisms, smooth maps
or continuous maps, when appropriately restricted to ΘReLU will remain as
diffeomorphisms, or smooth or continuous maps.

Notation. To avoid overbearing notation, in the following we will override
ΘReLU to mean ΘReLU.

Symmetry group of
non-negative
homogeneity

We can now look at the symmetries. Firstly, the non-negative homogeneity
property can be written as the action of the scaling group R+\{0} × R+\{0}
acting on v1, w1, and v2, w2. That is,

Gnnh = R+\{0} × R+\{0},
ρnnh : Gnnh ×ΘReLU → ΘReLU

((c1, c2), (v1,v2, w1, w2)) 7→ ρnnh((c1, c2), (v1,v2, w1, w2))
= (c1v1, c2v2, c

−1
1 w1, c

−1
2 w2).

Section 3.3 Parametric model spaces as smooth manifolds 59

Regardless of the points we had removed, this group action is still well defined,
since c1v1 = c2v2 only if v1 = c−1

1 c2v2, which have already been removed.
Furthermore, (c1v1, c2v2, c

−1
1 w1, c

−1
2 w2) ̸= 0, since c1, c2,v1,v2, w1, w2 ̸= 0.

By contradiction, we can show that this action is free. Suppose that it is not
free. Then, there exists (c1, c2) ̸= (1, 1) such that (c1v1, c2v2, c

−1
1 w1, c

−1
2 w2) =

(v1,v2, w1, w2). Thus,

c1 = v1/v1 = w1/w1 = 1,
c2 = v2/v2 = w2/w2 = 1.

The equation above is well defined since v1,v2, w1, w2 ̸= 0. There is clearly a
contradiction;hus the action must be free.

By Theorem 3.3.2, ρnnh is smooth. As with Example 3.1.2, the map (g, p)→
(ρnnh(p), 0), for g ∈ Gnnh and p ∈ ΘReLU is proper; this argument follows
similarly, since ΘReLU × ΘReLU is Hausdorff, and ρnnh has a continuous left
inverse. Thus, the quotient space is a smooth manifold.

Symmetry group of
node permutation

Secondly, we consider the permutation of nodes. The group we use here
is the group Gper = {0, 1}, where the neutral element is 0, and the group
multiplication is prescribed by 1 · 1 = 0. Thus 1−1 = 1. Its action on ΘReLU is,

ρGper : Gper ×ΘReLU → ΘReLU

(g, (v1,v2, w1, w2)) 7→ ρGper(g, (v1,v2, w1, w2))

=
{

(v1,v2, w1, w2) if g = 0
(v2,v1, w2, w1) if g = 1

.

This group action is also well-defined, irrespective of the removed points.
This is a discrete group action, and is therefore smooth. It is free, since for
(v1,v2, w1, w2) and a transformed output (v2,v1, w2, w1), equality only holds
if v1 = v2. Since we had removed these elements, this is a contradiction.
Properness holds, since

Finally, the symmetries caused by the reducibility only occur on the subset
where v1,v2, w1, or w2 is equal to zero, or v1 = cv2. Since these points were
removed, the new ΘReLU contains models that are not reducible. Hence, we
can ignore this symmetry.

Having looked at individual symmetry groups of ΘReLU, we now consider the
product group GReLU = Gnnd × Gper. Here, the group action is given by,

ρReLU = GReLU ×ΘReLU → ΘReLU

(gReLU = (gndd, gper), (v1,v2, w1, w2)) 7→ ρReLU((gndd, gper), (v1,v2, w1, w2))
= ρgnnd ◦ ρgper((v1,v2, w1, w2)).

60 Models and Symmetries Chapter 3

Notation. gReLU = (gndd, gper) denotes that an element of GReLU is to be
denoted by gReLU, but also consists of (gndd, gper).

Further, by ρgper and ρgnnd , we denote the transformation specified by the
group actions gndd, and gper respectively.

Interestingly, this product action is still free. If the action from Gper is
chosen from the group element 0, then, since Gnnd is free, the composed
map must be free. On the other hand, if Gper is 1, we can show, by con-
tradiction, that the composed action must still be free. If it isn’t, then
for some (v1,v2, w1, w2) there must exist ((c1, c2) ̸= (0, 0)) ∈ Gnnd such
that (c2v2, c1v1, c

−1
2 w2, c

−1
1 w1) = (v1,v2, w1, w2). If so, we would have that

v1 = c2v2, and v2 = c1v1; this is a contradiction, since such constant scales
had been removed.

For any action defined by an element of Gnnd × Gper, we have a smooth map,
since each ρgper and ρgnnd is smooth. In order to check whether the com-
plete group action is proper, we must check if a continuous inverse exists for
(g, p) 7→ (ρReLU(g, p), p), for g ∈ GReLU, (as per Proposition A.53(d) in [58,
Appendix A]).

Suppose we are given p = (v1,v2, w1, w2) and ρReLU(g, p) = (v1
′,v2

′, w1
′, w2

′).
Let us say that the correct component from Gper is 0. Then,

(v1
′,v2

′, w1
′, w2

′) = (c1v1, c2v2, c
−1
1 w1, c

−1
2 w2).

From this c1 and c2 can easily be found. Alternatively, if we assume that
Gper = 1, then

(v1
′,v2

′, w1
′, w2

′) = (c2v2, c1v1, c
−1
2 w2, c

−1
1 w1).

Therefore, to find c1, we would carry out v2
′/v1. However, in reality, v2

′ =
c2v2 =⇒ c1 = c2v2/v1. This cannot be, since v1 = (c2/c1)v2 would have
been removed.

We can similarly identify if the original element of Gper was 1 by checking the
converse of the above. Thus, a continuous inverse exists; therefore, the quotient
manifold theorem holds.

Remark 3.3.2: When d ≥ 2, the elements that were removed are indeed
measure zero. However, when d = 1, this is no longer the case. •

3.4 Visualising symmetries using GENNI
The discussion above shows that studying the symmetries of a neural network
in general can be tricky. One must account for the various symmetry groups
that can cause such symmetries, but also how they interact in the full product
group. In particular, large networks can have very non-trivial isotropy groups
w.r.t. the group action.

Section 3.4 Visualising symmetries using GENNI 61

In order to aide in the study of symmetries in neural networks, we had proposed
a method for visualising the Geometry of Equivalences for Neural Network
Identifiability (GENNI) in [59], which we summarise here. This technique
provides a visualisation of nearby models of a particular model (as given by
its parameter) that are in the same equivalence class (in terms of functional
equivalence). For a given architecture κ : Θ × X → Y , and a given model
θ0 ∈ Θ, we initially find m+ 1 points that are symmetric to θ0 by minimising
the following objective:

Jθ0 : Θ→ R

θ 7→ Jθ0(θ) = 1
|X|

∑
x∈X

|κ(θ0, x)− κ(θ, x)|22.
(3.6)

This objective is an approximation of the metric on the parametric model
space:

d : Θκ ×Θκ → R+\{0}

(θ1, θ2) 7→ d(θ, θ) =
√∫

X
|κ(θ0, x)− κ(θ, x)|22 dx.

Since Jθ0 is minimsed whenever the architecture maps are equivalent, we note
that [θ0] := {θ∗ ∣∣ θ∗ = arg minθ∈Θ Jθ0(θ)} = preimπκ

(θ0), where πκ : Θ→ Θκ is
the projection map w.r.t. to the equivalence relation ∼κ. Thus, by minimising
Equation (3.6), we find equivalent models.

Following this, we find a linear subspace that contains these parameter values
using the Gram-Schmidt algorithm. We use this subspace to sample more
symmetric parameter values on a predetermined grid, and keep them if, for
some ϵ > 0, Jθ0(θ) < ϵ. This set is called the ϵ−equivalent set. This is then
visualised graphically; if m ≤ 3, this can be visualised directly. If not, we carry
out dimensionality reduction, such as UMAP [65].

62 Models and Symmetries Chapter 3

This page was left intentionally blank.

63

Chapter 4

Learning in Machines

Tasks and models can be connected using loss functions and learning
algorithms. Together, a parametric model, loss function and learning

algorithm form a local representation of the task.

4.1 Learning Problems
A task is a system, along with a particular data-generating process. This
doesn’t intrinsically specify what we want to learn. Since the data-generating
process contains compositions of structure maps, what we want to learn is
related to these structure maps. The key notion is that one of these structure
maps is unknown, as we want to find a suitable proxy that we can use. Together,
a task, its unknown structure, and the measure of suitability gives us a learning
problem.

4.1.1 Subject of learning
Given a task, a learning problem can be created if there is a single consecutive
aspect of a structure map of the task that is unknown to us. Recall that a task
is a derived system. Further, in Definition 2.6.2, we said that for each system
of functions that derives a system, there is a single, unique structure map that
it affects. A particular structure map, however, could be affected by several
systems of functions.

Denote by F = {(Ri,Si)}i∈I the set of systems of functions that derived a par-
ticular task t = ((R,S),P). Suppose that a subset (UF ⊆ F) = {(Rj ,Sj)}j∈IU

is such that all (Rj ,Sj) affects a single structure map f ∈ S, and,

f = fpre ◦⃝j∈IU
fj ◦ f suf . (4.1)

fj should be interpreted as in Definition 2.6.2.

Notation. ⃝j∈IU
fj denotes ... ◦ fj ◦ ... for j ∈ IU .

We say that UF affects f consecutively. Then, f is a valid unknown structure
map, that can be learned. It is implicitly assumed that this structure map is

64 Learning in Machines Chapter 4

used in the data-generating process of the task. The data-generating process is
a composition of structure maps; we further assume that f is the only unknown
structure map, and that fpre and f suf correspond to known components of the
structure map, if any.

We call f the subject of learning; it is the unknown structure map.

Let us look at examples of unknown structure maps in some ML scenarios:

Example 4.1.1 Supervised Learning: Consider the supervised learning
problem from Example 2.5.1:

tSL = ((RSL,SSL),PSL),

where
RSL = {X,Y },
SSL = {f : X → Y },
PSL : X ×X → X × Y

(x, x) 7→ PSL(x, x) = (idX(x), f(x)).
For such a task, the subject of learning would be f . ▲

Example 4.1.2 Model-free Reinforcement Learning: A minimal RL task
can be defined, as in Section 2.5.2, by,

tRL = ((RRL,SRL),PRL),

where,
RRL = {S,A,R, {γ},Π},
SRL = {T : S ×A → S,

R : S → R},
PRL : S ×Π→ O∞

RL

(s0, π) 7→ PRL(s0, π) = fπ
roll(s0).

See Section 2.5.2 for definitions of the notation.

This task is defined such that we can input an arbitrary policy from π ∈ Π and
obtain trajectories. Typically, the goal of a RL problem is to find the optimal
policy, where optimality is defined by,

π∗ = arg max
π∈Π

Vπ(s0),

where Vπ(s0) is the value of π, for some initial state s0 ∈ S. Thus, the subject
of learning is the structure map π∗ from another, associated system,

zπ∗ = (Rπ∗ ,Sπ∗),

where,
Rπ∗ = {S,A},
Sπ∗ = {π∗ : S → A}.

▲

Section 4.1 Learning Problems 65

Example 4.1.3 Model-based Reinforcement Learning: The main dif-
ference here, compared to model-free RL in Example 4.1.2 is that both the
optimal policy and the transition dynamics are subjects of learning. ▲

We can now define a task as being learnable when an unknown structure map
has been identified.

Definition 4.1.1 (Learning task). Definition of a
Learning task

Suppose we are given a task t = ((R,S),P),
which was derived from F = {(Ri,Si)}i∈I .

Further, we are given a subset (U ⊆ F) = {(Rj ,Sj)}j∈IU
which consists of

systems of functions that consecutively affect a single structure map f ∈ S of
t, as in Equation (4.1). We call f the chosen subject of learning.

Together, tf = (t, f) form a learning task.

An important note is that the subject of learning is chosen; different learning
tasks can be derived from a single task, depending on which suitable unknown
structure map is chosen as the subject of learning.

Although tasks can exist in a vacuum, we want to think about tasks that exist
in task spaces. A task space is derived by considering all variations of the
derived system, w.r.t. all systems of functions that were used. Then, given
U ⊆ S, we can derive a learning task space by projecting the task space onto
the coordinates that correspond to the systems of functions that affect the
structure maps in U .

Definition 4.1.2 (Space of Learning Tasks). Definition of a Space
of Learning Tasks

Given a space of tasks T, let
us denote by F = {(Ri,Si)}i∈I the systems of functions that were used to
derive T. Specify a subset (UF ⊆ F) = {(Rj ,Sj)}j∈IU

such that, for each
(t ∈ T) = ((R,S),P), there exists a f ∈ S which is affected consecutively by
UF, and (t, f) is a learning task.

The space of learning tasks is the submanifold of T which is derived as the total
variation space (see Definition 2.6.4) of systems derived from UF.

Notation. We will be using T to denote either a task space, or a learning
task space; if their differences are important, we will specify as needed.

As an example of where the task space and the space of learning tasks differ,
consider Example 4.1.3. A potential space of RL tasks could be obtained by
varying both the transition dynamics, as well as the reward function. However,
for the purpose of learning the transition dynamics, any variations in the
reward function aren’t useful, and thus can be projected out.

The space of learning tasks can be interpreted with an equivalence relation,
where we say that we aren’t interested in any variation of tasks that are derived
from UF

c. This does not mean that the outcomes of the data-generating process
is independent of UF

c. However, as we will see in the next section, this does

66 Learning in Machines Chapter 4

mean that such variations do not affect how we evaluate a proxy for the subject
of learning.

The definition of a learning task is made as in Definition 4.1.1 so that it is
clear that the only differences between any task t ∈ T is characterised by the
variations in T. Thus, any other salient property is the same across all learning
tasks. For example, if the subject of learning is continuous in one learning task,
it is continuous in any other learning task from the same space of learning
tasks. This becomes important since this way, by assumption, any learning
algorithm that can be applied to one learning task, can be applied to any other
learning task.

We saw in Example 4.1.3, that it is possible to consider more than one subject
of learning. The point however is that a single learning problem is associated
to a single subject of learning. The solutions of multiple learning problems can
be interlinked, as we will see in Section 8.1; this does not deviate from this
condition.

4.1.2 Loss functions
Having identified the structure maps of a task that we would like to learn, it
remains to specify how to determine the suitability of proxies of the subjects
of learning. This is carried out by a loss function.

A loss function can be generally thought of as a map on a space of learning
tasks and a space of proxy maps. A proxy map is a possible replacement for the
unknown structure map. A proxy must satisfy any other structure maps that
are composed of the unknown structure map. For example, if the structure
map is continuous, then the proxy must also be continuous. The space of proxy
maps is the space of all functions that can act as a proxy map.

Definition 4.1.3 (Space of Proxy maps).Definition of a Space
of Proxy maps

Given a learning task (t, f), where f
has domain and codomain X and Y respectively, and t = ((R,S),P), the space
of proxy maps Fpx is the largest space of functions, where every fpx ∈ Fpx

satisfies:

a) fpx : X → Y ,

b) fpx satisfies all structure maps that f satisfied in the systems of functions
from which it was derived.

Furthermore, given a space of learning tasks T, which has a topology OT, Fpx

has a topology OFpx such that,

OT ⊆ OFpx |T,

where OFpx |T denotes the subset topology on T w.r.t. OFpx.

Since the differences between the structure maps of tasks in T are described
by the variations of the task space, the space of proxy maps is the same for

Section 4.1 Learning Problems 67

all learning tasks in T. Thus, there is a unique space of proxy maps for each
space of learning tasks.

In addition to satisfying any other conditions that the structure of the learning
tasks set out, a space of proxy maps also has a topology that can be used
to derive the topology of the space of learning tasks. Common topologies
on function spaces apply here; for example, if Fpx is a space of continuous
functions, then the compact-open topology can be used.

Definition 4.1.4 (Loss Function). Definition of a Loss
Function

Given a learning task space T, a loss
function L is a map,

L : Fpx × T→ R,
where Fpx is the space of proxy maps for T.

Smaller values of loss functions imply that a particular proxy map is more
suitable for a given task. Thus, in a local region, the most suitable proxy map
would be the minimising proxy map, for a given learning task. It should be
noted that we have not made any assumptions about the loss function, be
it smoothness, continuity, or convexity. Furthermore, as we will see in the
examples below, the loss function will typically use of data-generating process
of the task. A task can vary relative to structure maps that are not used when
defining the learning task, and the data-generating process can vary with these
too. However, the loss function is a map on the space of learning tasks, and by
assumption, is not affected by any variations of the task outside of those in
the space of learning tasks.

Example 4.1.4 Supervised Learning: Suppose we are given the learning
task from Example 4.1.1, which comes from a space of learning tasks TSL. For
this, let us assume the Y is Rm We assumed that the subject of learning is a
smooth, continuous map. A commonly used loss function is the squared loss:

LSL : Fpx × TSL → R

(fpx, tSL) 7→ L(fpx, tSL) =
∫

X
||fpx(x)− pr2 ◦PSL(x)||22 dx.

Other possible loss functions include any p-th power Lp loss, and the cross-
entropy loss (for classification problems). If Y is not Euclidean, then the loss
can be defined with an appropriate metric or distance function. ▲

Example 4.1.5 Reinforcement Learning: Suppose we are given the learning
task from Example 4.1.2, which comes from a space of learning tasks TRL.
Recall that the subject of learning of a RL problem is another system zπ∗ . The
space of proxy maps is the space of policies Π. Then, the loss function is a
reciprocal of the value function of the RL problem1. That is,

Ls0
RL : Π× TRL → R

(π, tRL) 7→ Ls0
RL(π, tRL) = Vπ(s0).

1The reciprocal here is because the reward function increases as we get closer to the
optimal policy, while a loss function is assumed to decrease.

68 Learning in Machines Chapter 4

As we saw in Definition 2.5.3, the value function is defined over a trajectory,
which can be generated from the data-generating process of the RL task, as
defined in Section 2.5.2. ▲

Together, a learning task and a loss function gives us a learning problem.

Definition 4.1.5 ((Space of) Learning problem(s)).Definition of a (Space
of) Learning
problem(s)

A learning task t contained
in a space of learning tasks T, and a loss function L : Fpx×T→ R is a learning
problem.

The tuple (T,L) is a space of learning problems.

Thus, a learning problem contains information of what needs to be learned,
and how to determine when we have learned it (by measuring a potential
solution against the loss function). We included the space of learning tasks,
from which the particular task was taken, as a part of the definition of a
learning problem. Typically, when considering just learning a single task, this
might not be necessary. However, some information regarding its topology
could be useful when devising the model architecture; this is left for future
work. The importance of the space of learning tasks is in its use in transfer.

4.2 Learning Algorithms
In practice, we will typically not work with the full space of proxy maps; we
will be making a choice of a model architecture, and thus a model space. Since
we assume that we have knowledge of all structure maps that are not unknown,
the parametric model space is a subset of the space of proxy maps. Thus,
the loss function that is used is a restriction of the loss function defined in
Definition 4.1.4. Conceptually, the full loss function is independent of any
choice of the model architecture we make, and as per Definition 4.1.5, is a
component of the learning problem. However, for practical purposes, it suffices
to ensure that it works on Θκ × T.

The goal of a learning problem (t,L) is typically to find a fpx∗ ∈ Fpx such
that,

fpx∗ = arg min
fpx∈Fpx

L(fpx, t).

This would be carried out by a learning algorithm:

Definition 4.2.1 (Learning Algorithm).Definition of a
Learning Algorithm

Given a space of learning problems
(T,L), and a model space Θκ, a learning algorithm is map,

L : T→ Θκ,

where
L(t) ∈ arg min

m∈Θκ

Lt(m).

Section 4.2 Learning Algorithms 69

A learning algorithm is therefore a map that takes a task to a model in the
model space, ideally to the model which is best suited to replace the subject of
learning.

4.2.1 Gradient Descent
Summary of Gradient

Descent
The gradient descent method is a popular learning algorithm. For this, we
must assume that loss function, for each task, is smooth w.r.t. the model space.
That is, the map Lt : Θκ → R is smooth. The gradient descent algorithm
is typically a discrete technique, where we make an update to the current
estimate of the best model using information of the gradient of Lt at that point.
In the present work however, we will present an idealised version of gradient
descent, where the algorithm is said to follow the flow of the gradient vector
field on Θκ, derived from the loss function.

More precisely:

Definition 4.2.2 (Gradient Descent). Definition of a
Gradient Descent

Given a learning problem (t,L) ∈ (T,L),
and a model space Θκ such that Lt : Θκ → R is a smooth function, we obtain a
co-vector field on Θκ by taking the differential of the negative loss −Lt, denoted
by dLt.

Let us denote υdLt : Θκ × R→ Θκ as the flow of dLt. Then, given an initial
model m0 ∈ Θκ, the gradient descent learning algorithm is the map

LGD : T→ Θκ

t 7→ LGD(t) = lim
t→∞

υdLt(m0, t).

Behaviour of
Gradient Descent

Thus, given an initial starting point, the gradient descent algorithm returns
to the attracting singular point that this point flows to. From a dynamical
systems point of view, some key assumptions have been made about the loss
function. Firstly, it is assumed that the loss function contains at least one
singular point2 where its linearised system contains at least one eigenvalue
with a negative real value.

By the Stable (Center3) Manifold Theorem [64], we know that there exists a
smooth stable manifold around this singular point. Then, we assume that the
chosen initial point is in the stable manifold of one such a singular point. This
means that the appropriate map as in Definition 4.2.2 can be defined.

Differences in
practice

As mentioned before, we discretise the gradient descent algorithm in practice.
This is equivalent to using Euler’s Method [111] to numerically solve the
differential equations of the flow, with the initial value being set to m0. We
also do not let t → ∞. Finally, typical ML uses stochastic gradients, where
approximations of the gradient are used.

2In dynamical systems literature [100], this is called a fixed point, since it refers to fixed
points of the differential equations defining the dynamical system. We use the terminology
used by [58].

3If there are eigenvalues with zero real value

70 Learning in Machines Chapter 4

This page was left intentionally blank.

71

Chapter 5

Representations and Learning

In this chapter, we argue that the previous chapters can be unified under
single framework of representations.

Summary of
representations

Our notion of a representation was inspired by Marr [63]. In [63], a represen-
tation is a formal scheme by which something can be described; the result
of the application of such a scheme to a particular object is its description.
The representation is an agreed-upon convention that can be used to describe
things in a consistent manner.

Examples of
representations

Pedagogical examples of this are the languages that we communicate with.
Each word in a language capture the notion of an elementary idea, and sentences
allow us to describe more complex ideas, built from such elementary units. The
notions that words describe are universally agreed by other users of a language,
which allows us to communicate what we think, feel and want to express. A
language exists for this reason, a reason against which we can measure its
usefulness (at least qualitatively). The representation is the process by which
we translate ideas into words and symbols.

Similarly, we pose the learning algorithm as a representation of a space of
tasks. The symbols that describe tasks are contained in the chosen model
space. In the rest of this chapter, we formalise these notions, and describe
how the previous statement can be arrived at. We end this chapter by briefly
discussing the similarities of our theory to that of category theory.

5.1 Representations
In order to formalise the intuitions we have about representations, we begin by
defining a representation map.

Definition 5.1.1 (Representation map). Definition of a
Representation map

Given a space of symbols Y, and a
space X, a representation map KY

X on X is a surjective map,

KY
X : X → Y,

72 Representations and Learning Chapter 5

Notation. Given a representation map KX(X) of X, where the symbol
space is not specified, we will denote by KX(X) any valid symbol space for
this representation map.

Furthermore, the notation K(·), where · is a space denotes the output space
of the representation map; if it is an element, then the usual map applies.
In the future, we will also suppress the notation KY

X to K for brevity; it is
expected that X and Y will be clear from the context, unless otherwise
specified.

In addition to being surjective, a representation map could be injective too. In
this case, the representation would be exact; if not, it is approximate.

Given a representation map, a description of an element x ∈ X is,

Definition 5.1.2 (Description).Definition of a
Description

Given a representation map KY
X on X using

symbols Y, a description of x ∈ X is y ∈ Y such that,

y = KY
X(x).

Thus, a description of an element of a set depends on the chosen representation
map. In Section 5.1.5, we will discuss how there can be many equivalent
representations.

The final condition of Definition 5.1.1, which states that the preimages of any
represented element are disjoint implies that the representation map creates a
partition of the represented set. That is, ∼

KY
X

is an equivalence relation, where

x ∼
KY

X
y ⇐⇒ KY

X(x) = KY
X(y) for x, y ∈ X. This ensures that there is no

ambiguity about how we can interpret a given symbol, up to the equivalence
relation given by the partition. An interpretation of a description is then
defined as,

Definition 5.1.3 (Interpretation of a description).Definition of a
Interpretation of a
description

Suppose y is a description
of x ∈ X under a representation map KY

X . Furthermore, denote ∼
KY

X
as the

equivalence relation induced by KY
X . Then, an interpretation I of the description

y is a bijective map,
I : Y→ X/ ∼

KY
X
,

such that for y ∈ Y,
I(y) ∈ preim

KY
X

(y).

I is also called an interpretation map.

From this definition, the map I ◦ KY
X is the projection map of the equivalence

relation ∼
KY

X
.

Section 5.1 Representations 73

5.1.1 Representation of a system
In the present work, we will be using representation maps to represent systems.
Since a system contains some structure, we can then place additional constraints
on the interpretation.

Definition 5.1.4 (Representation of a system). Definition of a
Representation of a

system

Suppose we are given two
systems (R,S) and (Ry,Sy). We will call (Ry,Sy) the system of symbols.

(Ry,Sy) has the property that for each relatum X ∈ R, there is a corresponding
symbol space YX ∈ Ry. Furthermore, for each f ∈ S, there is a corresponding
fy ∈ Sy. Thus, there is a correspondence in the sets of domains and codomains
too.

A collection of representation maps and interpretations {(KYX
X , IX)}X∈R will

be called a representation of the system z if,

a) for each domain or codomain DX
y that is a set of subsets1 of YX ,

preimKX
(x) ∈ DX , for x ∈ Dy.

b) for any structure map (f ∈ S) : DX1 × ... → DY1 × ... and the corre-
sponding (fy ∈ Sy) : DX1

y × ...→ DY1
y × ...,

preimKX1
◦ fy(yX1 , ...), ... = f(preimKX1

(x1), ...).

A representation of a system ensures that the descriptions of any element of
a space in the relata are consistent w.r.t. its structure. The symbol space
preserves the structure of the original system by ensuring that where possible,
carrying out an operation (by applying a structure map) in the symbol space
has a corresponding operation in the original system.

Corollary 5.1.1. Definition 5.1.4 immediately implies a structure on the
quotient space X/ ∼

KY
X

, where X ∈ R of the system being represented.

More precisely, if (f ∈ S) : DX1 × ... → DY1 × ... is a structure map, then
there is an induced map,

f |∼K : DX1/∼KX1
× ...→ DY1/ ∼KY1

× ...

(x1, ...) 7→ f |∼K(x1, ...) = IY1 ◦ fy(I−1
X1

(x1), ...), ...
= KY1 ◦ f(preimKX1

◦ I−1
X1

(x1), ...), ...

Proof. Follows by the bijectivity of the interpretation map. ■

1Recall that the set of domains and codomains consists of subsets or sets of subsets of
relata. In the former case, the required condition is preimKX

(x) ⊆ DX , which is trivially
satisfied by the surjectivity of the representation map. Thus, we have not stated this in
Definition 5.1.4.

74 Representations and Learning Chapter 5

X YX X/ ∼KX

Y YY Y/ ∼KY

preimKX
I−1

X

preimKY I−1
Y

f fy f |X/∼KX

Figure 5.1. An example of the commutative diagram that must be satisfied by
a representation of a system. Here, the structure map is f : X → Y .

Definition 5.1.4 and Corollary 5.1.1 imply a commutative diagram for each
structure map in S. An example of such a diagram is shown in Figure 5.1.1.
The preservation of structure that a representation satisfies complies with

what is typically thought of as structure preservation in mathematics.

Example 5.1.1 Linear maps can represent linear systems: Consider the
vector systems,

zV1 = ({V1,R}, {f1
+ : V1 × V1 → V1, f

1
· : R× V1 → V1)

zV2 = ({V2,R}, {f2
+ : V2 × V2 → V2, f

2
· : R× V2 → V2),

as in Example 2.1.3.

Theorem 5.1.2. For a map K : V1 → V2 with a valid interpretation to be a
representation of zV1 with symbol space zV2 , it is necessary and sufficient that
K is linear. We assume that the representation and interpretation of R are the
identity maps.

Proof. Since the domains of the structure maps are subsets of the relata, we
do not need to consider Condition (a) of Definition 5.1.4. We will only show
the proof for f+ for brevity, since a similar procedure can be done for f·.

Notation. In this proof, we will denote a vector vi
j ∈ Vi, where the super-

script i refers to the vector space Vi that the vector is an element of, and
the subscript j indexes the vectors. Thus v1

1 and v1
2 are 2 vectors from the

same vector space V1.

Necessity: Suppose Condition (b) is true. Then for f1,2
+ , we start with the

following true statement,

preimK ◦ f2
+(v2

1, v
2
2) = f1

+
(
preimK(v2

1), preimK(v2
2)

)
.

Let us also denote for v1
1, v

1
2 ∈ V1,

K(v1
1) = v2

1,

K(v1
2) = v2

2,
(5.1)

Section 5.1 Representations 75

and,
f1

+(v1
1, v

1
2) = v. (5.2)

Assuming that the condition for linearity is false,

K ◦ f1
+(v1

1, v
1
2) ̸= f2

+
(
K(v1

1),K(v1
2)).

Then,
K ◦ preimK ◦ K(v) ̸= K ◦ preimK ◦ f2

+
(
K(v1

1),K(v1
2))

K([v]) ̸= K ◦ preimK ◦ f2
+(v2

1, v
2
2).

This implies2 that,
[v] ̸= preimK ◦ f2

+(v2
1, v

2
2)

̸= f1
+([v1

1], [v1
2]).

This contradicts Equation 5.2. Thus the assumption that linearity is false is
contradicted.

Sufficiency: Linearity of K implies that,

K ◦ f1
+(v1

1, v
1
2) = f2

+(K(v1
1),K(v1

2)).

Then, if we also follow the convention of Equation 5.1,

preimK ◦ K ◦ f1
+(v1

1, v
1
2) = preimK ◦ f2

+(K(v1
1),K(v1

2))
[f1

+(v1
1, v

1
2)] = preimKf

2
+(v2

1, v
2
2)

f1
+([v1

1], [v1
2]) = preimKf

2
+(v2

1, v
2
2)

f1
+

(
preimK(v2

1),preimK(v2
2)

)
= preimKf

2
+(v2

1, v
2
2),

as needed by Definition 5.1.4. Note that due to the surjectivity of the repre-
sentation, the above works for any v2

1, v
2
2 ∈ V2. ▲

Linear maps typically preserve the algebra of a vector space; we see that the
structure preservation of a representation of a vector system is exactly that of
a linear map. ▲

Example 5.1.2 Continuous maps represent topological systems: For
topological systems, Condition (a) of Definition 5.1.4 is exactly the definition for
the representation to be continuous map. In fact, this makes the representation
map a quotient map, and the topology on the symbol space the quotient
topology. ▲

5.1.2 Equivalence of representations
Given 2 representations of a system, it can by useful to determine if they are
equivalent to each other. Formally, this is defined as,

2Since K is a valid map (i.e. it is not one-to-many), K(x) ̸= K(y) =⇒ x ̸= y.

76 Representations and Learning Chapter 5

X/ ∼K2
X

K2
X(X) X K1

X(X) X/ ∼K1
X

Y/ ∼K2
Y

K2
Y (Y) Y2 K1

Y (Y) Y/ ∼K1
Y

K1
X I1

XK2
XI2

X

K1
Y I1

YK2
YI2

Y

f ff

tX

t−1
X

tY

t−1
Y

Figure 5.2. An example of a commutative diagram that must be satisfied by
equivalent representations of a system. Here, the structure map is f : X → Y .

Definition 5.1.5 (Equivalence of representations).Definition of a
Equivalence of
representations

Given a system (R,S),
suppose that {(K1

U , I
1
U)}U∈R and {(K2

U , I
2
U)}U∈R are representations of it. We

say that these representations are equivalent if the map,

tU : K1(U)→ K2(U)
u 7→ tU (u) = K2 ◦ I1(u),

is an isomorphism, and that for any structure map (f ∈ S) : X1× ...→ Y1× ...,

f
(
I2

X1 ◦ tX1 ◦ K1
X1(x1), ...

)
=

(
I2

Y1 ◦ tY1 ◦ K1
X1 ◦ f

1(x1, ...), ...
)
,

and,

f
(
I1

X1 ◦ t
−1
X1
◦ K2

X1(x1), ...
)

=
(
I1

Y1 ◦ t
−1
Y1
◦ K2

X1 ◦ f
1(x1, ...), ...

)
.

f i is the projection of f(·) onto its ith output.

That is, a commutative diagram as in Figure 5.2 could be drawn for any f ∈ S.

5.1.3 Local and Total Representations
It is sometimes, as in Example 5.1.5, useful to define representations on subsys-
tems. We defined a subsystem in Definition 2.1.4. A local representation of a
system is a representation of one of its subsystems. A local representation could
be derived from a representation of a system, by restricting the representation
and interpretation maps.

Definition 5.1.6 (Induced Local representation).Definition of a
Induced Local
representation

Suppose that z̃ = (Rz̃,Sz̃) is
a subsystem of z = (R,S). Furthermore, {(KYX

X , IX)}X∈R is a representation
of z, where YX is a relatum of (Ry,Sy).

This induces a representation {(K
Y

X̃

X̃
, I

X̃
)}(X̃∈R

z̃
)⊆X∈R

on z̃, where,

Section 5.1 Representations 77

a) Y
X̃
∈ Rỹ of (Rỹ,Sỹ), which is a subsystem of (Ry,Sy) where (Y

X̃
∈

Rỹ) = {KYX
X (u)

∣∣ ∀u ∈ X̃},
b) and,

K
Y

X̃

X̃
: X̃ → Y

X̃

x̃ 7→ K
Y

X̃

X̃
(X̃) = KYX

X |X̃(x̃),

I
X̃

: Y
X̃
→ X̃/ ∼

K
Y

X̃

X̃

ỹ 7→ I
X̃

(ỹ) = IX |X̃(ỹ).

{(K
Y

X̃

X̃
, I

X̃
)}(X̃∈R

z̃
)⊆X∈R

is called the induced local representation of subsystem

z̃.

Remark 5.1.1: (X̃ ∈ Rz̃) ⊆ X ∈ R in {(K
Y

X̃

X̃
, I

X̃
)}(X̃∈R

z̃
)⊆X∈R

specifies that

X̃ corresponds to X ∈ R, where X̃ ⊆ X. Thus X̃ is the relata that was
obtained by taking the subset of X when defining the subsystem. •

Given a set of subsystems of z, and their local representations, we can write a
total representation of z in terms of the local representations, if the union of
all the systems is z. Where the intersections of subsystems are not null, it is
necessary that the local representations in the intersections are equivalent, as
per Definition 5.1.5. That is,

Definition 5.1.7 (Total Representation). Definition of a Total
Representation

Suppose we are given a collection
{z̃i = (Ri,Si)}i∈I of a system z, such that,⋃

i∈I
z̃i = z,

where the union of subsystems was defined in Definition 2.1.5.

For each such subsystem z̃i, we are given a representation {(Ki, Ii)}X∈Ri . Then,
the collection, {

{(Ki, Ii)}X∈Ri

}
i∈I ,

is called a total representation of z if, when z̃i∩ z̃j are valid subsystems, the local
representations induced by {(Ki, Ii)}X∈Ri and {(Kj , Ij)}X∈Rj are equivalent.

Note that a total representation is not a representation, since there is ambiguity
where the relata intersect. However, this ambiguity can be resolved up to the
equivalent representations.

5.1.4 Examples of Representations
Let us look at some examples. In these examples, we will be suppressing the
notation of representation maps.

78 Representations and Learning Chapter 5

Example 5.1.3 Natural numbers: The system of natural numbers we are
interested in is ({N, {0, 1}}, f< : N× N→ {0, 1}), where for x, y ∈ N,

f<(x, y) =
{

1 if x < y

0 otherwise
. (5.3)

f< is simply a structure map that implies ordering of the natural numbers. The
most common representation for this system is the Arabic numeral system. The
Arabic numeral scheme expresses the natural numbers in a base of 10. Formally,
the symbol space YAr of the Arabic numeral system is the collection of all
symbols aK ...a1a0 for ai ∈ {0, 1, 2, ..., 9}, and K ∈ N is the largest number such
that for any k > K, ak = 0; this is to prevent leading 0s. The set {0, 1, 2, ..., 9}
is ordered, and can be multiplied and added in the usual, expected way. The
notation ...a2a1a0 isn’t a product of numbers, but rather each number written
one after the other.

Then, the representation map KAr is given by:

KAr : N→ YAr

n 7→ KAr(n) = aK ...a2a1a0,
(5.4)

where,
a0 = n mod 10,

a1 = (n− a0)
10 mod 10,

a2 = (n− 10a1 − a0)
100 mod 10,

...

aK =
(
n−

∑K−1
i=0 ai10i

)
10K

mod 10.

For example, 42 is a1a0, where a0 = 2 and a1 = 4. Note that this representation
map is exact. Finally, the interpretation IAr is,

IAr : YAr → N

I(aK ...a1a0) 7→ IAr(aK ...a1a0) =
K∑

i=0
ai10i.

(5.5)

As an interesting note, since the representation map is exact, this map is
actually the inverse of the representation map.

As per Definition 5.1.4, we must show that IAr is consistent with the structure
of the system. For this, we will assume that the representation map of {0, 1}
is the same, since its constituents are also natural numbers. We must show
that for x, y ∈ N, f<

(
IAr ◦ KAr(x), IAr ◦ KAr(y)

)
= IAr ◦ KAr(f<(x, y)). That

is, does the representation have the same ordering as the natural numbers?

To show this, we must prove that there is an ordering in YAr that is induced
by KAr; if x < y then IAr ◦KAr(x) < IAr ◦KAr(y). This follows naturally, since

Section 5.1 Representations 79

IAr is the inverse of KAr. Thus, IAr ◦ KAr is the identity map on N, which
implies that the required condition holds. ▲

Example 5.1.4 Linear maps: The second example we will look at is the
space of linear maps between the vector spaces X and Y . Firstly, we define
representations of a vector space V ; the dimension of V is d. The system here
was described in Equation (2.5). Let us choose the symbol space YVe to be
Rd. A possible representation map KVe is,

KVe : V → Rd

v 7→ KVe(v) = (a1, ..., ad),
(5.6)

where, a1, ..., ad ∈ R are such that, for the independent vectors e1, ..., ed ∈ Rd,

v =
d∑

i=1
aiei.

We can immediately notice that e1, ..., ed ∈ Rd are basis vectors, and a1, ..., ad

are called the vector coordinates. This immediately gives us a valid interpreta-
tion IVe,

IVe : Rd → V

(a1, ..., ad) 7→ IVe(a1, ..., ad) =
d∑

i=1
aiei,

(5.7)

where e1, ..., ed form a basis. To prove the consistency of this representation
with the structure maps, we must show that IVe ◦ KVe is linear. This is of
course a well known result in linear algebra, and will not be repeated here.

Now, let us denote X and Y as vectors spaces of dimension m and n respec-
tively. A system of linear maps Flin between X and Y can be written as
({Flin, X, Y }, {flin}), where,

flin : Flin ×X → Y

(g, x) 7→ flin(g, x) = g(x).

flin(g, x) is map that simply evaluates a linear map g at a point x ∈ X. We
will choose the symbol space for this to be the matrix space Rm×n. Let us
adopt the representation (KVe, IVe) for representations (KX , IX) and (KY , IY)
of Rm and Rn respectively. Then, a representation map Klin for this space of
linear maps can be defined as,

Klin : Flin → Rm×n

g 7→ Klin(g) = A,
(5.8)

where for any x ∈ X and (y ∈ Y) = g(x),

AIX ◦ KX(x) = IY ◦ KY (y).

80 Representations and Learning Chapter 5

U

V

ϕ(U)

ϕ

ψ

ψ(V)

ϕ ◦ ψ−1

M

Figure 5.3. A topological manifold M with examples of its coordinate charts.
We see here that despite being a complicated topological entity (See the hole
in the middle), locally, it is equivalent to R2. Further, note that the chart
transition map ϕ ◦ ψ−1 : VR2 → UR2 exists because a homeomorphism is
invertible and continuous, since the composition of continuous maps remains
so.

It’s interpretation Ilin is once again implied. Here, since A describes a map,
we will define the interpretation of A(x). Thus,

Ilin(x) : Rm×n → Flin

A 7→ Ilin(A) = AIX ◦ KX(x).
(5.9)

Once again, the proof of consistency is a known result in linear algebra. ▲

Example 5.1.5 Topological Manifolds: In Example 2.1.2, we showed how a
topological space can be written in terms of a system. A topological manifold
is a topological space, with the addition of an atlas (see Appendix A.3). Not all
topological spaces can be made into manifolds; the requirements to allow this
are given in Definition A.3.1. An atlas A contains bi-continuous maps from the
open sets of the topological space onto open sets of some Rd; see Figure 5.3.
Each such map, called a chart map, can be seen as a local representation map.

In it’s totality, a topological manifold can be seen as a total representation of a
topological space system ({X}, {OX ,Stop}). To see this, we first construct a
subsystem zU = ({{U}, {OX |U ,Stop|U}}), where U ∈ OX such that ∃(U, ϕU) ∈
A, and OX |U is the subset topology. The chart map ϕzU : U → (URd ⊆ Rd) is
a homeomorphism to a subset of Rd. Thus, we can say that URd is the symbol
space, ϕzU is the representation map, and ϕ−1

zU
is the interpretation.

If we construct such subsystems for all charts of the atlas, we have local
representations for each of them. Since a requirement of an atlas is that chart
maps are consistent where their domains intersect, the local representations

Section 5.1 Representations 81

defined here are equivalent. Thus, the union of all such subsystems and their
representations gives us a total representation of the topological system. ▲

5.1.5 Properties of Representations
This definition, and the previous examples illustrates some important properties
of a representation of system.

A representation is not unique. Examples 5.1.3 and 5.1.4 are only single
examples of potential representations of their respective systems. There are
many other equivalent representations that could be used. Take the natural
numbers. Other numeral systems that can represent N include the binary
system, and the Roman numeral system. The former is similar to the Arabic
system, but its space of symbols is derived from {0, 1}, and its representation
and interpretation maps are defined in terms of powers of 2. The Roman
system on the other hand, uses a symbol space that derived from primitives
that include {I, V, X, L, C, D, M}, among others. For example, 42 is 101010
and XLII respectively.

The representations of vector spaces and spaces of linear maps in Example
5.1.4 were derived from a particular basis. As is well known in linear algebra,
we can carry out simple changes of bases to obtain equivalent representations.
For example, if (g ∈ Flin) : X → Y , and its description is A w.r.t. the bases
eX and eY for X and Y respectively. Choosing different bases for X and Y will
induce a different, but equivalent representation on the space of linear maps.

There is a similar argument for the local representations given by the chart
maps of a topological manifold. At the intersections of the chart domains, the
local representations are equivalent by definition . Take the linear maps again.
If the transformations of the bases of X and Y are given by BX and BY, then
the isomorphism g will be A = BYAB−1

Y .

A representation can be approximate. However, not all valid representa-
tions are equivalent. Previously, we alluded to a difference between exact and
approximate representations. There can be no isomorphism between exact and
approximate representations. So far, the representations we have described so
far were exact. Approximate representations do not uniquely describe every
element of the system being represented. However, they must, by definition,
still be consistent with the structure of the system.

For example, a possible approximate representation of the natural numbers
is to first map n ∈ N to its closest and smallest even number. That is,
feven(n) = ⌊n/2⌋. Then the representation map Keven

Ar = KAr ◦ feven. The
interpretation remains the same. Note that the output space of Keven

Ar is a
subset of YAr.

Similarly, we can approximate vector spaces by projecting down to a vector
subspace. For example, for a vector space of dimension d, the new representation
map could only report the first p < d outputs of the original representation

82 Representations and Learning Chapter 5

y = sin(x) ⇐⇒

y

x
... ...

Figure 5.4. Two representations of the sin function. On the left, it is written
in mathematical notation; on the right, it is drawn as a graph.

map given in Equation (5.6). This would mean that information regarding
the remaining bases is lost; however, working within this representation, the
structure maps are still satisfied.

Representations can be differently useful. Typically, a representation
of a system is created so that the system can be used for some purpose. For
example, perhaps a representation of the natural numbers is chosen so that
we can describe, in notation, the operation of addition. Here, the system of
natural numbers would contain an additional structure map f+ : N × N →
N; f+(n1, n2) = n1 +n2; it is trivial to show that the Arabic, binary and Roman
numeral systems are consistent with f+. For example, in the Arabic system,
42 + 2 = 44. In order to carry out an arbitrary addition in this representation,
we follow a set of rules. Given a1

K ...a
1
1a

1
0 and a2

H ...a
2
1a

2
0, we start from the right,

and add a1
i and a2

i ; if a1
i + a2

i ≥ 10, we do a carry over operation.

The rules are much more complicated for the Roman numeral system. If
addition was the reason for developing a representation of the natural numbers
by humans, then the Arabic is more suitable than the Roman system. Alter-
natively, if the addition was to be carried out by machines, then the binary
representation is the clear best.

In terms of Example 5.1.4, the choice of bases of vector spaces could have
computational consequences. For example, orthonormal bases make it easier
to compute the description of a vector, since each vector coordinate is the dot
product between the vector and the corresponding basis vector. If possible,
a representation of V can be chosen such that the basis vectors are the
eigenvectors of the linear map. Then, the description of this linear map would
be a diagonal matrix. Such a representation is easier to study.

An interesting example that illustrates this is shown in Figure 5.4, which shows
two representations of the sin function. The first (on the left) is the mathemati-
cal notation for this function. With this description comes an understanding of

Section 5.2 Learning in terms of Representations 83

its properties; these include its relation to circles, the trigonometric identities,
perhaps its relation to a notion of periodicity, and its role in, say Fourier
analysis. This notation evokes our abstract understanding of this function.

The second (on the right), is a graphical representation of it. Here, it is
represented as an image, where all pixels are colored white except for the points
that (approximately) correspond to different values of y = sin(x). In this
particular example, we sampled 100 points of the function. We differentiate
this representation from simply listing the (x, y) values of the function. This
representation evokes our visual understanding of the sin function. It also
tells us of the periodic nature of the function; it is however difficult to see its
connection to circles. This graphical view helps us imagine when and where a
sin function could be useful; for example, it helps convince us that they must
play a role in modelling waves.

5.2 Learning in terms of Representations

Transfer requires
local structure

From the point of view of solving a single learning problem (t,L), as long as
the solution L(t) ∈ Θκ is sufficiently good, we do not necessarily care about
how neighbouring models correspond to neighbouring tasks. That is, a single
task learning problem can be purely seen as an optimisation problem. However,
when considering problems of transfer, that inherently involve multiple learning
tasks from the same presumed T, this consideration becomes important, since,
as we will see in Chapter 6, transfer involves learning structure on the entire T.

Correspondence of
learning with

represetations

In the ideal case, we want the model space Θκ and the learning algorithm L to
form a representation of the T, where the model space is the space of symbols,
and the learning algorithm is the representation map. If this is the case, we
will say that the Θκ and L are well-behaved.

The interpretation of each model is given by its architecture map κ. We
mentioned in Section 2.6.1 that we assume that T is a smooth manifold, which
itself can be seen as a system. We also saw in Section 5.1.1 that representations
are structure preserving; without proof3, we state that representations of a
smooth manifold can be given by smooth, surjective maps onto another smooth
manifold; we have already assumed that Θκ is a smooth manifold.

When is a learning
algorithm smooth?

The conditions for which the learning algorithm is smooth is complicated. Let
us assume that we are using gradient descent, where the initial model m0 is
constant for all learning tasks. In this case, the smoothness of the learning
algorithm depends on how the singular points of Lt vary as we change the task
t. Stating that the loss function is smooth might not be enough. For example,
[93] showed that even for a seemingly innocuous system, where the governing
equations were well behaved, the resulting change in dynamics is fractal in
nature. Therefore, for the present work, we assume that the learning algorithm
is well behaved locally.

3This proof would be similar to those given in Section 5.1.1.

84 Representations and Learning Chapter 5

Local task and model
spaces

By locally, we mean that there exists a submanifold of T, and a submanifold
of Θκ where the learning algorithm is a representation map. Henceforth, when
we refer to the task space, or the model space, we will be referring to these,
unless specified otherwise. Another assumption here is that each model in the
submanifold corresponds to a suitable solution of a task, in that its loss value
is sufficiently small. This resolves an issue where the interpretation map maps
to the space of proxy maps, rather than the task space, as would be required
by Definition 5.1.3. However, since each model now is a suitable proxy for a
task, we proxy this submanifold as being the task space.

In practice, we do not actually start with the T. So far, we used it as an abstract
tool to conceptualize and build the machinery to talk about representations.
We would typically consider some tasks that we think belong to a single T,
and determine the loss function, learning algorithm and model space. In this
way, instead of ensuring that the learning algorithm matches the criteria of a
representation map, we assume a space of tasks that allows the entire setup to
be a representation. The simplest way to achieve this would be to assume that
locally (as above) the task space is equivalent to the model space.

Induced topology on
Task Space

Another setting could be if the elements of a task space are given, but some
other structure (such as its topology) isn’t. We could induce topologies, for
example, by stating that preimL(UΘκ) ⊆ T, for UΘκ ∈ OΘκ is an open set
in T. It is trivial to show that this is a valid topology for T, using the fact
that unions and intersections commute with preimages. In this topology, the
learning algorithm is guaranteed to be continuous, by definition.

This topology does not however say anything about whether the loss function is
continuous under the product topology, even if we assume that Lt is continuous.
In order for L to be continuous, preimL(UR) = (UΘκ , V) must be an open set.
Since Lt is continuous, we know that UΘκ is open. However, for V ⊆ T to be
open, L(V) must be an open set in Θκ. In other words, it must be the case
that UR = L(L(V), V). There is no guarantee that this true; hence we cannot
generally say if L is continuous.

5.3 Relation to Category Theory

Category theory as
the structure of
structure

In light of the theory developed so far, it might be prudent to discuss some
category theory. Category theory formalises the structure of mathematical
structure. One can observe that many structures in mathematics can be de-
scribed a sets, properties of those sets, and maps that preserve these properties.
For example, topology deals with sets with topologies and continuous maps
that preserve topologies. In differential geometry, smooth manifolds come with
smooth structures, and smooth maps that preserve these structures. Measure
spaces, and measure preserving maps are seen in measure theory.

Brief introduction to
Categories

Thus, category theory emphasizes composable arrows between elements of a
category that can form commutative diagrams [62]. A category consists of a

Section 5.3 Relation to Category Theory 85

class of objects and a class of morphisms whose domains and codomains are
contained in the class of objects. Typically, the set of objects are spaces, such
as topological spaces in the category of all topological spaces Top.

Morphisms are seen as the structure preserving maps, such as continuous maps
in Top. In the class of morphisms, there must exist an identity map for each
object. Finally, a category is equipped with a binary composition operation
that is associative. This operation takes morphims and spits out morphisms.

Summary of previous
chapters

In the previous chapters, we have seem very similar concepts being described
in our definitions of systems and representations. Systems contain in their
construction a set of objects (possibly other systems), a set of domains and
codomains, and maps between them. The set of (structure) maps contains
the identity map for each element in the relata. Systems can be inherited
from, or derived such that structure maps are preserved. Representations are
structure preserving maps, with commutative diagrams being drawn to depict
equivalences between such maps.

Thus, coincidentally, there appears to be an undeniable correspondence between
the present work and category theory. The present work seems to have begun
a description of the category of learnable problems and solutions, and to cast
learning as the expression of particular morphisms in this category. We do
not attempt to formalise this correspondence here, and will leave this work for
the future. Perhaps, in doing so, our theory and its application can be greatly
streamlined and enhanced by the literature that exists for category theory.

86 Representations and Learning Chapter 5

This page was left intentionally blank.

87

II

The Structure of
Transfer

88 Representations and Learning Chapter 5

This page was left intentionally blank.

89

Chapter 6

Defining Transfer

Transfer in the context of learning, is the notion where properties of
knowledge learned from one context can be re-used in another. This is

a concept that we, as humans, are intimately familiar with. When we learn
something new, we often try to think of it in terms of what we already know,
allowing us to learn without much redundancy [91, 26]. In fact, without transfer,
learning would be situational, where each piece of knowledge or skill we acquire
can only be applied to the context in which it was learned. Considering the
range and depth of different situations that we encounter, having to learn from
scratch for each of them would be computationally infeasible, and incredibly
inefficient!

Transfer avoids
relearning concepts

Transfer allows us to avoid relearning concepts that are useful across multiple
problems. Consider addition as it is used in physics, mathematics, accounting,
and simply everyday life. Since we are able to identify that these contexts
require the same notion of addition, with the differences being what is being
added, and how many summands there are, we are required to learn addition
only once. In cases where such transfer isn’t possible, or if we aren’t capable
of transfer, we would have to learn how to add for each case separately.

Transfer is almost certainly a necessary component for efficient learning. In
order to study transfer, we must first produce an airtight definition of it. This
definition, in addition to being stated clearly and concisely, must satisfy our
intuitions about transfer, while also allowing us to find other, previously unseen
examples of this process. While we may, in a general sense, state that transfer
is the sharing of knowledge between different contexts, we require a definition
that is explicit about its constituent components. In particular, we require
detailed descriptions of the following:

• what allows for transfer,

• what does it mean to share knowledge, and

• what does it mean to transfer.

In addition, since we want to study transfer mathematically, the definition must
lend itself to a mathematical formalisation. A key issue with the definitions

90 Defining Transfer Chapter 6

provided in the literature is that they do not allow us to understand transfer.
For example, Baxter’s definition of transfer is intuitively sound, and he showed
several important properties of transfer using his model [7]. However, it is
difficult to discern neither what is being transferred, nor the structure that
allows for transfer. Baxter’s model provides a technique for learning a suitable
bias, but it doesn’t give us a sufficient definition of transfer, since such a
definition must be extracted from his method as merely the process that
occurs when carrying out the learning of bias. We believe that an elementary
definition of transfer can be made; this should allow for an intellectually
satisfying pathway to study transfer, since identifying what we want a learning
algorithm to learn should precede the dissemination of how we should learn it.

Therefore, in the present chapter, we will produce a definition of transfer that
satisfies our requirements, and addresses these issues. In Section 6.1, we will see
that transfer can be found in many areas, ranging from human learning, to how
we organise knowledge. We will see that an underlying thread that connects
all these is a notion of a transfer, a bias that is exploited by transfer. The
existence of symmetries between knowledge and problems is what enables us
to transfer, and explicitly defining transfer using symmetries will be beneficial
for us.

6.1 Everyday Examples of Transfer
The idea of transfer can be seen in many other aspects of the human experience.
In this section, we discuss a few examples of such cases. These examples are
not from the context of learning in machines.

ω

v

p1

p2

p3

p4

l

Figure 6.1. A rotating and translating set of point masses. The rods connecting
the points together are massless. The length of each connecting rod, measured
end to end, is 2l. From the center, the set of points is rotating with angular
velocity ω and translating horizontally with a linear velocity of v.

Example 6.1.1 Abstraction:Abstraction is a form
of transfer

Consider the problem of trying to model the
motion of the 4 point masses p1, ..., p4 in Figure 6.1. As a first attempt, we could
describe each point mass independently of each other. This would generate

Section 6.1 Everyday Examples of Transfer 91

the following equations:

x1(t) = cos(θ1
0 + ωt) + vt+ x1

0

y1(t) = sin(θ1
0 + ωt) + y1

0,
(6.1)

x2(t) = cos(θ2
0 + ωt) + vt+ x2

0

y2(t) = sin(θ2
0 + ωt) + y2

0,
(6.2)

x3(t) = cos(θ3
0 + ωt) + vt+ x3

0

y3(t) = sin(θ3
0 + ωt) + y3

0,
(6.3)

x4(t) = cos(θ4
0 + ωt) + vt+ x4

0

y4(t) = sin(θ4
0 + ωt) + y4

0.
(6.4)

Here, (x1
0, y

1
0), ..., (x4

0, y
4
0) denote the initial positions of p1, ..., p4 respectively.

Further, θi
0 = arctan(yi

0
xi

0
). Modelling this problem in this way is tedious; it will

only get worse if the number of point masses increases. It is also repetitive,
where we have to repeat several properties that are constant between all the
point masses.

Firstly, we note that point masses are connected to each other, and are all
at a constant distance of l away from the center of rotation. Furthermore,
they are all offset from each other by π/2rad. Finally, all the particles are
rotating with a constant and similar angular velocity, and are moving linearly
with a constant and similar velocity1. Putting these together, we can write the
following, generalised equations of motion.

xn(t) = cos((n− 1)π/2 + ωt) + vt+ (xc
0 + l cos((n− 1)π/2))

yn(t) = sin((n− 1)π/2 + ωt) + (yc
0 + lsin((n− 1)π/2)),

(6.5)

where the point (xc
0, y

c
0) is the initial position of the center of the system. This

can be further simplified as,

xn(t) = cos((n− 1)π/2 + ωt) + l cos((n− 1)π/2)) + xc(t)
yn(t) = sin((n− 1)π/2 + ωt) + lsin((n− 1)π/2)) + yc(t),

(6.6)

where,

xc(t) = vt+ xc
0

yc(t) = yc
0.

(6.7)

That is, we can describe the motion of each point mass as the motion of the
center and a correction term that corresponds to the differences between each
point mass (and the angular velocities)2. We have abstracted out the fact that

1Note that these properties were already used when writing Equations 6.1-6.4.
2This abstraction isn’t unique. We could, for example, equivalently abstract out the motion

of a single point mass, rather than the center of rotation. In fact, this can be continuously
changed to any other point in R2.

92 Defining Transfer Chapter 6

the motion of the center is a consistent property between those of the point
masses. In doing this, we have modelled the problem in terms of what was
abstracted out, and the remaining properties required to describe the motion
appropriately.

There is an important relationship between abstraction and transfer3. As in
the example above, to transfer is to identify what is consistent between two
concepts, and to express related concepts in terms of what can be abstracted
out, and what cannot. ▲

Example 6.1.2 Human learning:School curricula
involve transfer

The transfer of learning in humans has
been studied extensively [91, 101], and is often exploited when we develop
curricula for teaching new knowledge and skills [81, 56]. In most school
curricula, we first learn general skills that can be used in more complex, yet
specialised knowledge we tackle later on. An obvious example are the basics
of mathematics (such as algebra, calculus and graphical visualisation), which
are then utilised in the more advanced topics of physics, economics, and
mathematics itself. Transfer is clearly important in human learning.

Transfer is ubiquitous
in human learning

In psychology, and the theory of learning, transfer is defined as the use, or
influence of previously acquired knowledge4 in application to learning new
knowledge [99, 1], or knowledge being applied in novel or similar ways and
situations [91]. Thorndike [108] proposed that transfer occurs in situations
that contain identical elements between them, and therefore can be satisfied
with similar responses; the need for exactness weakens this theory [91]. Gener-
alisation theories [91, 95] relaxes this constraint5, allowing transfer to occur in
similar situations. ▲

Example 6.1.3 Organisation of knowledge: Another example of such
abstraction, and therefore transfer is in the way by which we organise and
communicate knowledge. Here, knowledge is the collection of discussions and
writings that we have amassed as a society over the years. Consider any piece
of scientific writing. More often than not, such a document will contain a
literature review, and/or a background section. Such sections describe the
knowledge on which the present writing is built upon. It is the knowledge that
had been generated by others, and must be assumed when reading the novel
scientific result.

Kuhnian structure of
science

Such ideas are succinctly described in the Kuhnian philosophy of science [52].
3It should be noted that not all examples of abstraction involves transfer. In a general

lumped mass abstraction, a collection of particles is lumped as a solid object, we could model
its motion in terms of a point mass. However, it does not allow us to identify the motion of a
particular particle, and transfer to other particles.

4In the present work, knowledge, as it pertains to humans, is used as an umbrella term
that includes knowledge (what we know), skills (what we can do), and strategies (when to
use our knowledge and skills).

5It should be noted that generalisation and identical elements are prescribed in different
theories (connectionism and classical conditioning respectively). We ignore these distinctions
for clarity.

Section 6.1 Everyday Examples of Transfer 93

Kuhn posits a process by which scientific discovery occurs. Given a problem
that is to be solved, initial thinkers would often independently generate theories
from first principles. Each such school of thought would describe or explain
a subset of the observations made regarding the problem to be solved. They
would each be written in terms of the point of view taken by their generating
school. What should be noted is that at this stage, each school would be very
disparate from each other, and would be very biased by their particular beliefs
and tendencies.

Paradigms and
transfer

Following this, there will come a time when a unifying theory is developed, that
takes the common aspects of each school of thought, and provides a general
expression of the discovery that can be applied to the many points of view that
we taken previously. Such a theory is called a paradigm. A paradigm marks a
point of maturity for a field of study, and contains the concepts and skills that
a practitioner of the field must be familiar with, as a minimum. Examples of
paradigms include the theory of motion by Newton, and Maxwell’s theory of
electromagnetism. These are the concepts that are common to the different
problems that a field tries to solve, and can therefore be transferred between
them.

Transfer in languageThis type of abstraction is used whenever we communicate. We often make
references to common pieces of knowledge to aide in an explanation. In fact,
communication can only occur through a common understanding. This includes
both the spoken and unspoken aspects of language; we see that confusions
occur when we assume certain cultural norms that would be different when
communicating with an individual from a differing culture. ▲

Example 6.1.4 Compression: An important consequence of transfer is
its ability to compress knowledge. If several pieces of knowledge are to be
represented in language, or otherwise, transfer can allow us to do so without
repetition. That is, if the pieces of knowledge can be represented in a way
that separates what is common between them from what is different, we will
only need to express what is common once. This was already seen in Section
6.1.1. We can also see this idea exploited in common compression techniques
in computer science, such as the interframe compression of video [2].

Figure 6.2. Interframe compression, illustrated using two images, or frames set
in the same scene. The key, and only difference between these can be found
inside the dashed box, where the human changes poses.

Interframe
compression

Interframe compression works by identifying a group a consecutive frames where

94 Defining Transfer Chapter 6

consistent subset of the frames change over time (hence the name inter frame).
The first of these frames will be called the key frame, and will be expressed in
its entirety. We will also store the boundary of the region that changes. Then,
the following frames will be expressed in terms of their differences within this
boundary, with the key frame. Thus, we will not be repeating the portion of
this group of frames that is equal to each other. This technique exploits the
fact that often, many parts of video stay constant. This could for example, be
because of an object moving in a constant background, as in Figure 6.2. In
more complicated forms of this compression, motion prediction and the like can
be used to compress video that contain motion of objects that are predictable;
for example, the movement of the camera.

Note that this form of compression is lossless; it is merely a re-writing of each
frame with a separation between the aspects of the frames that are consistent,
and those that are different. We can therefore avoid redundant expression of
former. ▲

6.2 Bias and Transfer

Transfer makes
processes simpler

Transfer, in the context of a process such as learning, expression, or storage, is
a means of making said process simpler. Transfer in learning has the additional
goal, or perhaps consequence, of making the learning better. Transfer achieves
this by exploiting redundancy; this is most clearly seen in Example 6.1.4, where
it is clearly redundant to repeatedly specify elements of a sequence of images
that do not change between them.

Section 6.1 showed that what we intuitively think of as transfer occurs in many
different contexts; this could be in learning, expression, or storage, among
others. For simplicity, let us, without distinction, denote these contexts as
transfer between objects.

Objects and their
properties

Suppose we are given a set of objects O. Associated with this set of objects
is a set of properties P . Each property (p ∈ P) = {si}i∈I consists of a set of
statements that can be assigned to an object; each object must be assigned
a statement from all properties. Given an object o ∈ O, it’s characterisation
C(o) is the set of statements from each property that is assigned to it. The
characterisation of each object is unique, and thus, each object can be uniquely
identifiable from its characterisation. A simple example of this is shown in
Figure 6.3.

What do we mean by
complexity

Without a loss in generality, we will assume that all statements in all properties
are used at least once. Let us call the complexity of characterising an object as
the number of elements in O. The larger |O| is, the higher the complexity of
characterisation is. In a sense, this measures how hard it is to uniquely identify
an object in O.

This measure of complexity directly relates to other notions of complexity we
might have about a process in which transfer is involved. In storage (as in

Section 6.2 Bias and Transfer 95

Figure 6.3. A zoo of animals. Here, the set of properties is
{
psize =

{1, 2, 3}, pgenus = {cat, owl}
}
. Each animal in the zoo can be identified by

its size and genus.

Example 6.1.4), the number of bits (and therefore memory) used to represent
an image correlates with the bitdepth and resolution of an image. In learning
in machines, the set of properties is the number of parameters of the parametric
model space6, and the complexity would be the size of the parametric model
space. The size of the parametric model could be measured against a notion
of volume, or, if we assume a manifold space, its dimensions, which correlates
with the number of parameters. Typically, the difficulty of learning correlates
both with size of the model space7, and the number of parameters [92, Chapter
6].

Transfer reduces
complexity

A goal of transfer is to reduce the complexity of characterising an object o,
given the characterisation of another object o0. This can happen only if there
is some overlap between C(o) and C(o0). As an example, consider the zoo in
Figure 6.3. Suppose C(o) = (owl, 1) and C(o0) = (owl, 2). Here, both animals
are owls, and differ only in their size. Thus, if we knew that o does in fact
have the same genus of o0, we do not need to characterise (learn, express, or
store) this property. The genus of o can be transferred from o0.

BiasThis process identifies a bias that can be assumed about a subset of a set of
objects. If we can say that 2 objects belong to a particular, proper subset of
objects, and we have knowledge of the characterisation of the bias, we can
exclusively work with the subset, rather than the full set. Since the size of a
proper subset is strictly smaller than that of the full set, the characterisation
is less complex.

Transfer and biasTherefore, without lack of generality, it can be stated that transfer is the
process of identifying bias, and applying it to create subsets. This is clear in
Section 6.1. In Example 6.1.1, the bias is the arrangement of the point masses,
and initial linear and angular velocities. The pre-assumed knowledge is a bias
of any learning curriculum, or scientific paradigm; in the former, curricula are
designed so that knowledge from earlier years are needed (up to an extent) for
topics of later years. Finally, the fixed pixels, their values and positions are

6Remember, we do not consider non-parametric models in the present work.
7This is called the hypothesis space in SLT literature.

96 Defining Transfer Chapter 6

the bias in inter-frame compression.

Transfer in learning. As stated in [7], transfer in learning can been see
as the automatic learning of bias. The importance of transfer in learning is
accentuated by the importance inductive bias in learning. To a practitioner
of machine learning, it is well known that inductive bias is important. For a
given learner (as in Chapter 4), its inductive biases generally are its properties,
other than the training data, that make certain solutions, or generalisations
more likely than others [68]. That is, given knowledge of the past (the data),
an inductive bias makes some theories (the solution) about predicting the
future (application of the solution) more desirable than others. Biases are
assumptions that are made, either implicitly, or explicitly, about the learning
problem, and are embedded in the choices made when a solution is designed.
In the structural view of machine learning, such biases come in the form of the
model architecture that is chosen.

Model architectures
provide bias

If our learning problem is regression, the model architecture, given the finiteness
of its parameters, biases the potential description of the unknown structure map
to be within model space of the architecture. That is, if we had chosen a linear
architecture, our description can only ever be a linear function (as opposed
to any other map between the input and output spaces). In reinforcement
learning (RL), the form of its reward function (which directly informs the loss
of a RL problem) often produces policies that are surprising; this is fixed by
techniques of reward shaping [71].

No-Free Lunch
theorems

By the No-Free Lunch (NFL) theorems [124, 125, 92], and/or the Law of
Conservation of Generalisation Performance [88], we know that a universal
learner is impossible. A universal learner will perform better than any other
learner over all tasks8. NFL theorems show however, that if a learner performs
well in some tasks (compared to another learner), there will exist other tasks
that it performs worse than the other learner, which contradicts a universal
learner.

Bias is needed The argument of an NFL theorem, or the Law of Conservation of Generalisation
Performance [88], stems from a fundamental inability of unbiased induction
to distinguish between learning solutions that match in training performance
(that is, w.r.t. the training data), but differ in unseen examples. An unbiased
learner would say that all possible outcomes in the unseen regions are equally
possible; if one was to jump up, there could be equal probability of them falling
down, or that an intergalactic parrot would appear to sing ’Hallelujah’ while
they floated in space.

Thus, bias is needed. This bias is an assumption of some higher level regularity
[84] of our universe; a statement about what is more likely in our universe
than others. A common example is Occam’s razor [12]. This is a bias towards
simpler solutions. The assumption here is that solutions that are more complex

8Assuming that the distribution over all tasks is uniform, or other particular distributions
[31].

Section 6.3 Notions of Transfer and Relatedness 97

are less likely to be found in our universe, which can be shown using a minimum
description length argument [33]. Arguments against the use of Occam’s Razor
in learning stem from the futility of assuming that a complex universe can
be described using simple models [121, 25]. It has however been shown that
Occam’s Razor is built into the successful paradigm of Bayesian theory [77].

Another example is that intrinsic properties of an object do not change; if an
object tends to fall when thrown up 9, it will tend to do so in the future, and
not spawn intergalactic, singing birds.

Regularities can be
on any set of objects

Such higher level regularities do not need to be on the grand scale of our
universe, but could be about any set of objects. By making a choice of a model
space, we have made assumptions about the type of learning problems that it
can solve. This bias applies to all solutions available in the model space. To
transfer between solutions then, we must find biases within a model or task
space. This is goal of learning to transfer, to find a useful bias that can be
assumed about a subset of tasks or models.

6.3 Notions of Transfer and Relatedness
So far, transfer was described in terms of subsets. For transfer, we decided on a
single subset to which the objects of interest belonged. This says nothing about
the remaining objects in the set of all objects. Consider the set of all animals.
A catergorisation we have chosen is in terms of an animal’s phylum, class, order,
family, genus and species. For example, the red fox species is of the phylum
vertebrate, class mammal, order carnivore, family Canidae (dog), and genus
Vulpes (true fox). At each level, a particular animal be in multiple of that
bias. That is, a red fox cannot be a mammal and a bird. This classification
shows the regularity at each level. All animals in the class mammal, have
the property of being a mammal, and therefore satisfy the axioms of being a
mammal.

Transfer can occur at
each level of a

hierarchy

In such a catergorisation, there was a structure that was given to the entire
set, since each level created a partition of the sets in question. At each level,
the pertinent properties of animals in a class can be transferred; the properties
of being a mammal, such as having mammary glands is true for all animals in
the mammal class. In other words, each level contains an equivalence relation,
where we can say that 2 animals are equivalent if they belong to the same
subset. A partition is a global structure, and gives us a consistent sense in
which to discuss transfer.

Consider the level of phylum; the catergorisation of animals into their respective
phylums is carried out by considering consistently certain properties. Each
phyla can be seen as a particular body plan [112]. Such consistency can be

9In this example, we consider the data points gathered by throwing objects up, and seeing
them fall down; we do not assume any knowledge of a theory of gravity, or otherwise.

98 Defining Transfer Chapter 6

useful, and thus, we will only consider transfer in the context of such global
notions in the rest of this thesis.

Set partitions allow
for transfer

To summarise, we have decided that to transfer within a set of objects is to
identify a partition of this set. Within each component of the partition, we
can say that to transfer is to move between objects in a component. If the
partitions were defined w.r.t. the constancy of some subset of all properties that
can be applied to an object, then the constant properties of each component is
precisely what is transferred. If instead, we started by proposing a partition
of the set of objects, then, at least in the context of learning, there will be a
notion of invariant properties; we make this precise in Section 7.1.

Let us make a notion of transfer precise.

Definition 6.3.1 (Notion of Transfer).Definition of a
Notion of Transfer

Given a set of objects O, a partition
PO = {Ui}i∈I on O will be called a notion of transfer.

We can make the following philosophical remarks about a notion of transfer,
or a set of related objects.

Remark 6.3.1 A notion of transfer is set specific: We note that a
notion of transfer is prescribed on a set of objects. This means that a notion of
transfer is only meaningful in the context of the set of objects that is considered.
Consequently, any notions of what is transferred, how effective the transfer is,
among others is dependent on the set of objects too.

To see this, consider again Example 6.1.1. A possible set of motions of point
masses is the collection of 2-dimensional motions that can be written as,

x(t) = cos(θ0 + ωt) + vt+ x0

y(t) = sin(θ0 + ωt) + y0,

where θ0 = arctan(y0
x0

), for a constant l ∈ R+, x2
0 + y2

0 = l2, and v and ω
are fixed. Since each such motion can be identified by θ0, this set is in fact
isomorphic to S. Then, the partition of this set, of which Example 6.1.1 is
a notion of transfer can, for each θ ∈ [0, π/2), be defined by the components
containing,

{θ, θ + π/2, θ + π, θ + 3π/2}.

In words, each component is defined by an initial angle from [0, π/2), and
contains the motions which start multiples of π/2 rad away.

Alternatively, the set of all motions that we consider could be the set of
all possible motions of a point mass. It is clear that this set is much more
complicated than the previous set, and any notions of what is transferred, and
how effective transfer is follows suit. •

Remark 6.3.2 Notions of transfer aren’t unique: It is possible for multiple
valid notions of transfer to exist, since it is possible to make a variety of
partitions of a set. This is shown in Figure 6.4. In Figure 6.4a, each subset has

Section 6.3 Notions of Transfer and Relatedness 99

(a) Partitioning the space of cats and
owls w.r.t. their animal class (i.e.
mammals or birds).

(b) Partitioning the space of cats and
owls w.r.t. their size.

Figure 6.4. Different partitions (and therefore classifications) of our zoo of cats
and owls.

the property that all animals in it are either cats or owls. Similarly, in Figure
6.4b, the size of each animal in a subset is the same. In some conditions, such
as if the space of things has the structure of a manifold, the number of different
partitions could be uncountable. •

Definition 6.3.2 (Transfer). Definition of a
Transfer

Given a set of objects O that is equipped with a
notion of transfer PO, we say that transfer occurs when we restrict movement
between objects within any single P ∈ PO.

6.3.1 Relatedness
Transfer occurs between related objects. Then, given a notion of transfer, we
can be precise about what a set of related objects is,

Definition 6.3.3 (Set of Related Objects). Definition of a Set of
Related Objects

Given a set of objects O, and a
notion of transfer PO = {Ui}i∈I , each component (Ui ∈ PO) ⊆ O is defined as
a set of related objects.

Therefore, given objects o1, o2 ∈ O, they are related iff there exists a component
U ∈ PO such that o1, o2 ∈ O. It is known that given any set, there is a
transformation group, called its permutation group, that acts transitively on
it. This can give us a transformative notion of relatedness. That is,

Definition 6.3.4 (Notion of Relatedness). Definition of a Notion
of Relatedness

Given a set of objects O, a set of
(pseudo) groups ΠO = {Gi}i∈I of transformations (or actions) which act on
subsets of O is called a notion of relatedness if:

a) Ui, Uj are the domains of Gi,Gj ∈ ΠO, then Ui ∩ Uj = ∅,

b)
⋃

i∈I Ui = O,

c) the set {O, ...}, which contains all the orbits of all G ∈ ΠO, is a partition
of O. This is a notion of transfer.

Groups are defined in Appendix A.4. A pseudogroup is a generalisation of

100 Defining Transfer Chapter 6

a group. For local diffeomorphisms over a manifold, a pseudogroup can be
defined as follows,

Definition 6.3.5 (Pseudogroups).Definition of a
Pseudogroups

[61] If M is a smooth manifold, and G is
a collection of local diffeomorphisms on open subsets of M into M , then G is a
pseudogroup if:

a) G is closed under restrictions: if τ : U →M , for U an open set of M , is
in G, then τ |V ∈ G for any V ⊆ U is also in G,

b) if U ⊆M is an open set, and U =
⋃

s Us, and τ : U →M , with τ |Us ∈ G,
then τ ∈ G,

c) G is closed under composition: if τ1, τ2 ∈ G, then τ1◦τ2 ∈ G, whenever the
composition is defined (i.e over intersections of the appropriate domain
and codomain),

d) G contains an identity diffeomorphism over M ,

e) G is closed under inverse: if τ ∈ G, then τ−1 ∈ G, with a domain τ(U),
where U is the domain of τ .

Conditions (c)-(e) are similar what we expect from a group, whereas Conditions
(a) and (b) allow the transformations to grow and shrink in expected ways.

Pseudogroups vs
Groups

An important distinction between groups and pseudogroups is that the latter
deals with local group-like structures. Therefore, the inclusion of pseudogroups
in Definition 6.3.4 allows us to talk about group-like properties that act locally
in an orbit. This is similar to how topological manifolds are locally Euclidean.
We can then consider a much larger, and more interesting variety of partitions
of sets of objects.

Given G ∈ ΠO, a transformation πG ∈ G is a map,

πG : (U ⊆ O)→ (V ⊆ O).

The action of a
transformation

The action of such a transformation is simply its application to an element of its
domain. The domain of a G ∈ ΠO is the union of domains of each πG ∈ G. The
(pseudo)group nature of a notion of relatedness gives a (local) consistency of
the transformations. It enforces that if π = π1 ◦π2, where π, π1, π2 ∈ (G ∈ ΠO),
then for x ∈ U , which is the domain of G,

π(x) = π1(π2(x)).

It also ensures the existence of inverse, and identity transformations. Thus if
π(x) = y, then there must exists π−1, where π−1(y) = x. Such consistencies
are clearly desireable.

Remark 6.3.3: An important note is that according to Definition 6.3.4, there
doesn’t need to only a single (pseudo)group that acts on the the set of objects.
It is sufficient that we have a collection of (pseudo)groups that act locally, and
are transitive on their respective orbits. •

Section 6.4 Learning to Transfer 101

Correspondance
between notions of

transfer and
relatedness

A notion of relatedness is defined on a notion of transfer. A notion of relatedness
is a stronger structure than a notion of transfer, since the former exactly specifies
the latter. There can be different notions of relatedness that are defined on a
notion of transfer; one such is derived from the permutation groups.

Let us say that,

Definition 6.3.6 (Transfer between objects). Definition of a
Transfer between

objects

Given a notion of relatedness
ΠO, transfer from o1 ∈ Ui ⊆ O to o2 ∈ Ui ⊆ O is the action of a transformation
from Gi ∈ ΠO.

Remark 6.3.4: In general, we do not want to make the notion of relatedness
the collection of permutation groups that make us a partition. This is not
particularly interesting. We mention it here for generality; in Chapter 7, we
discuss a particular way of creating partitions of spaces of tasks, which give
rise to interesting notions of relatedness. •

This idea of transfer works because by Definition 6.3.4, each set of related
objects is an orbit of a particular group in the notion of relatedness. Thus, the
transformations applied to each set of related objects do not move to a different
set of related objects. If transfer is the movement within a set of related objects,
then transfer between objects is the transformation of one object to a related
object. Transfer occurs, and can occur between related objects; to say that
objects are related is to say that transfer can occur between them.

Relation to previous
work

Our notion of relatedness is similar to a definition given in [10, 9], where a
single group of transformations act on t; our definition generalises this notion
to include different groups of transformations that can act on subset of t, but
produce the partition as needed.

A notion of transfer
defines an

equivalence class

Given a set of objects, and properties that can be used to characterise elements
of this set, a notion of transfer gives us a way to state that a subset of the
properties is of the same class; it defines an equivalence class. A notion of
relatedness is a stronger structure that tells us of transformations that can be
used to move between objects of the same equivalence class. Thus, transfer is
the process of doing so.

6.4 Learning to Transfer
In the discussion so far, we referred to objects in general. Let us bring the
focus back to transfer in the context of learning. We have stated that, in order
to transfer, we must identify a partition of the set of objects; this gives us a
formal notion of transfer. Therefore, to consider transfer between tasks, we
must consider a partition on a space of tasks. The implied notion of relatedness
then gives us transformations between the structures of tasks. Thus transfer
between tasks occurs when we apply a transformation from a transformation
(pseudo)group of this notion of transformations.

102 Defining Transfer Chapter 6

Intuitive description
of learning to transfer

We have stated before that in learning, we want to find a representation of the
space of learning tasks. This representation is given by a model space, and a
learning algorithm. Under some notion of transfer, if we transfer between tasks,
the interesting aspect to us is whether we can transfer between the descriptive
models of each task. Thus, given a notion of transfer on the model space, we
can intuitively think of learning to transfer as finding the set of related models
that correspond to the set of related tasks. Then, we can transfer between
models by learning (in the single task sense) within this restricted set; we call
this learning by transfer. This correspondence between the transfer structure
(notion of transfer) and the model and task space matches our expectations of
learning being structure preserving.

Formally, we define,

Definition 6.4.1 (Transfer Task (Model) Space).Definition of a
Transfer Task
(Model) Space

A task (model) space TX

(Θκ
X) with a notion of transfer PT (PΘκ) in its structure is a Transfer Task

(Model) Space.

A transfer task or model space is a task or model space on which transfer can
occur through the notion of transfer induced by their respective notions of
transfer. When a transfer model space is chosen for a transfer task space, we
will assume that there is a (pseudo) group homomorphism from ΠT → ΠΘκ .

We then define

Definition 6.4.2 (Transfer loss function).Definition of a
Transfer loss function

A transfer loss function is a map,

LX : PΘκ × PT → R

that can be written as,

LX(PΘκ ,PT) = fLX
◦ L(PΘκ ,PT).

Here, fLX
is some function that acts on the set of outcomes when the loss

function of the space of learning tasks is applied over the entire space of
PΘκ × PT. An example of such a function could be,∑

(m,t)∈PΘκ ×PT

L(m, t). (6.8)

Alternatively, it could be,

min
(m,t)∈PΘκ ×PT

L(m, t).

LX is defined on a space of subsets. As with learning in a single task setting,
this represents a measure of how good a particular set of related models is for a
given set of related tasks; it takes into account the loss of each task and model
combination. Similarly, the task component will be replaced by samples of PT.
How PΘκ will be practically dealt with will be described in Section 7.3. Then

Section 6.4 Learning to Transfer 103

Definition 6.4.3 (Learning to Transfer Algorithm). Definition of a
Learning to Transfer

Algorithm

Given TX, Θκ
X and LX,

an algorithm that learns to transfer is a map,

X : PT → PΘκ ,

where,
X(UT) ∈ arg min

UΘκ ∈PΘκ

LX(UΘκ , UT).

Remark 6.4.1: Written in this way, the similarities to single task learning
are immediate. Learning to transfer has the same form as vanilla learning;
the main difference is that learning to transfer occurs on the level of sets of
(related) tasks, rather than on individual tasks. •

Once X(UT) has been found for a task t ∈ UT by learning to transfer, we can
learn by transfer by carrying out a typical learning algorithm on UT. That is,

Definition 6.4.4 (Learning by transfer). Definition of a
Learning by transfer

Given a learning task t ∈ UT, with
loss function L, and for which we have learned to transfer, with X(UT) =
(UΘκ ∈ PΘκ), learning by transfer can be carried out by an algorithm,

LUT
: UT → UΘκ ,

where,
LUT

(t) ∈ arg min
m∈UΘκ

Lt(m).

Learning by transfer is to learn on a space that was selected such that transfer
is efficient. By restricting ourselves to X(UT), we are carrying out transfer, as
per Definition 6.3.2. We see that learning to transfer gives us the ability to
learn by transfer.

In Chapter 8, we will give examples of these techniques. We will see that
differences in major methods, such as multi-task learning, transfer learning,
and meta-learning derive from how these steps and components interact with
each other, as well as how the data used for each step is generated.

Remark 6.4.2: Under this framework, it should be noted that, as a minimizer,
the learning by transfer algorithm LUT

(t) does not necessarily have to be
arg minm∈Θκ

Lt(m), but merely must minimise in the set of related models.

In general, we would want UΘκ and the learning by transfer algorithm to
represent UT; the latter must then be as well behaved as we expect a single
task learning algorithm to be. Thus, it could be that for each UT ∈ PT, a
different learning by transfer algorithm needs to be devised. •

6.4.1 Equivariance of Transfer
Similar to continuous and smooth maps preserving the structure of topological
spaces and smooth manifolds, the structure preserving property of a learning
to transfer problem is equivariance. Equivariance is defined as follows;

104 Defining Transfer Chapter 6

Definition 6.4.5 (Equivariance).Definition of a
Equivariance

Given a (pseudo)group GM and an action
θM on a space M , a (pseudo)group GN and an action θN on a space N , and a
(pseudo)group homomorphism ρ : GM → GN , we say that a map f : M → N is
equivariant if,

f(θM (gm,m)) = ρ(gm)(f(m)),

for any m ∈M and gm ∈ GM .

Equivariance,
intuitively

Equivariance [72] is a property which, not unlike invariance, can be placed on
maps, and transformations that act on the domain and codomain. Here, instead
of the output staying constant when the domain is transformed, we expect the
output to also change in a similar10 manner. In other words, an equivariant
map commutes with a group action, up to the group homomorphism. This
notion has been growing in interest in the ML community; for example, it is
known that CNNs are translation equivariant, as visual problems follow similar
properties [21, 19].

Using a learning to transfer algorithm X, and a learning by transfer algorithm
LUT

, we can construct a learning algorithm L as,

L : T→ Θκ

t 7→ L(t) = LUT
(t),

where t ∈ (UT ∈ PT. Further, recall that LUT
: UT → X(UT).

Then, equivariance means that for πT ∈ ΠT, and the corresponding πΘκ ∈ ΠΘκ ,

L ◦ πT(t) = πΘκ ◦ L(t).

In general, whether this condition is met depends on the constructed learning
algorithm L, which in turn depends on X, all LUT

, the transfer loss function,
and the loss function (single task). However, if this map is equivariant, then
together with the model space, this algorithm is a representation of the transfer
task space.

For this reason, let us define a simpler, stricter version of learning to transfer,
that combines these components.

Definition 6.4.6 (Learning to Transfer (Simple)).Definition of a
Learning to Transfer
(Simple)

Suppose we are given a
space of learning tasks (T,L), where T is equipped with a notion of transfer
PT. We similarly select a model space Θκ that comes with its own PΘκ, and
an associated learning algorithm L that are well-behaved.

In addition, if L is equivariant w.r.t. PT and PΘκ,

X : PT → PΘκ

UT 7→ X(UT) = L(UT),
10Similar here implies either that the transformation set is the same, or that there is a

structure preserving map to a transformation set that acts on the codomain.

Section 6.4 Learning to Transfer 105

is a learning to transfer algorithm.

Further, we can define for UT ∈ PT, and (UΘκ ∈ PΘκ) = X(UT),

LUT
: UT → UΘκ

t 7→ LUT
(t) = L|UT

(t).

The correctness of the derived learning to transfer and learning by transfer
algorithms above is due to the well-behavedness of the model space and learning
algorithm, as it means that L is smooth and continuous.

We have a lot choiceAs with learning single tasks, the structure on the task space is typically not
concretely specified. Therefore, given a learning algorithm, model space, and
loss function, we can choose this structure such that the requirements above
are satisfied. If necessary, we can also choose local submanifolds of T and Θκ

that conform to our requirements.

106 Defining Transfer Chapter 6

This page was left intentionally blank.

107

Chapter 7

Foliations and Transfer

If learning to transfer requires us to partition our task space, then there
must be mathematical way to express such a partition, along with a way

to obtain the notion of relatedness from this partition. Recall that we will be
assuming that the task space T is a smooth manifold.

Partitions can be
using in 2 ways

In order to partition a manifold, we can use a combination of 2 strategies:

a) we can tessellate T, where we create subsets (or submanifolds) that are
of the same dimension as T.

b) we can create parallel submanifolds that are of dimensions lower than T.

Figure 7.1 graphically shows examples of these. It is possible to consider
hierarchies that consist of combinations of these partitions. When combining
these, it is not necessary that the dimensions of the submanifolds be equal to
each other. We choose that each component of the partition is a submanifold

vs

Tessellation Parallel Spaces

Figure 7.1. Comparison of tessellation and parallel spaces. The shaded regions
denote the subsets we are considering in each case. A tessellation creates
disjoint, smaller subsets that are of the same dimension as the original set.
Parallel spaces on the other hand creates disjoint subsets that are of a lower
dimension than the original set.

so that the continuity and smoothness benefits we obtain by thinking about

108 Foliations and Transfer Chapter 7

a space of tasks as a manifold apply to each component. A mathematical
framework that provides a systematic and parametric way of partitioning
manifolds into submanifolds is the theory of foliations.

A brief history of
foliations.

The study of foliations stems from a need to qualitatively understand non-
linear first order partial differential equations. Initial works were introduced by
Lagrange, and then generalised by Pfaff [37]. These gave examples of simplifying
such problems without providing the conditions under which such simplifications
were possible. A major theorem that links to regular foliations is the Frobenius’
Theorem, which gives conditions under which a smooth distribution (a smooth
sub-bundle of the tangent bundle) on a smooth manifold has smooth integral
manifolds. The collection of such integral manifolds is a foliation. These
conditions can be used to determine whether some overdetermined systems of
partial differential equations have solutions [58].

Foliations have found use in the geometric study of control systems. Hermann
[39] initially described the connection between the accessibility problem in
control theory and foliations. The accessibility problem asks which points can
be reached by following the flow of a system of differential equations, given
an initial point. From a control point of view, this corresponds to attainable
states of control system. Such contexts involved the use of singular foliations;
Stefan [98] and Sussman [102] independently extended Frobenius’ Theorem to
this case, under mild assumptions.

Summary of chapter In this chapter, we provide some definitions of foliations, as well as examples.
The key theorem (Theorem 7.2.1) is used to show how a foliation can be used to
produce a notion of relatedness. Section 7.3 gives a brief discussion about the
structure of the space of leaves of a foliation (the quotient space of equivalence
classes). We end by discussing how the structure of a foliation can be used to
learn to transfer.

7.1 Foliations

A foliation is a geometric structure that can be placed on a smooth manifold1.
A foliation can allow us to mathematically write partitions such as those we
saw in Figure 7.1 on a smooth manifold.

A foliation is a restriction on the atlas that is given to a smooth manifold.

Definition 7.1.1 (Regular Foliation).Definition of a
Regular Foliation

IfM is a smooth manifold of dimension
d with an atlas Am, a (k < d) -dimensional foliation Fk of M is a covering
subset of its atlas, that satisfies:

a) if (U, ϕ) ∈ F , then ϕ : U → (U1 ⊆ Rd−k)× (U2 ⊆ Rk), and

1Smoothness is not a necessary condition to introduce a foliation on a manifold, but we
consider it for our present purposes.

Section 7.1 Foliations 109

ɸ(U)
ɸ

!(V)

!

U

ɸ ⚪ !-1

V

M

Figure 7.2. A 1-dimensional regular foliation on R2.

b) if (U, ϕ), (V, ψ) ∈ F , where U ∩ V ̸= ∅, any chart transition func-
tion ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) has the form of ψ ◦ ϕ−1(x, y) =
(h1(x), h2(x, y)), where x ∈ U1, y ∈ U2, and

h1 : U1 → (V1 ⊆ Rd−k),
h2 : U1 × U2 → (V2 ⊆ Rk).

Foliations create
partitions

Intuitively, this definition describes the decomposition of a manifold into non-
overlapping connected submanifolds that are of dimension k [13]. Each such
submanifold is called a leaf. Locally, a foliation creates a rectification of
the coordinates. This is implied by Condition (b), whereby during a chart
transition, the first d− k coordinates of the output depend only on the first
d − k coordinates of the input; the remaining k coordinates depend on the
entire input coordinate. Thus the first d − k coordinates of a point on the
manifold are consistent up to chart transitions.

A precise definition of a leaf can be made usingplaques;

Definition 7.1.2 (Plaque). Definition of a PlaqueGiven a foliation chart (U, ϕ) of a foliation Fk

on manifold M, a plaque αU
q is a subset of U obtained by,

ϕ−1(
{q ∈ (U1 ⊆ Rd−k)} × (U2 ⊆ Rk)

)
.

A plaque is component of a local partition of the open set U . It is obtained
by keeping the d− k coordinates fixed. Plaques can be said to be consistent if

110 Foliations and Transfer Chapter 7

their first d− k coordinates are equivalent. That is, for (U1, ϕ1), (U2, ϕ2) ∈ Fk,
where U1∩U2 ̸= ∅, plaques αU1

q ⊂ U1 and αU2
s ⊂ U2 are consistent iff s = h1(q).

h1 is as in Definition 7.1.1. Then, given a particular plaque, a leaf is the union
of all plaques consistent with it; this is an equivalence relation. Thus,

Definition 7.1.3 (Leaf).Definition of a Leaf Given foliation Fk of manifold M. A leaf L ⊂M
is a collection of points, where for any p, q ∈ L, there exists a sequence of
consistent plaques (αUi

si
)I
i=0, such that,

a) p ∈ αU0
s0 , and q ∈ αUI

sI
, and,

b) Ui ∩ Ui−1 ̸= ∅.

Alternative definition
of a regular foliation

Alternative definitions of a regular foliation can grant us some more insight
about them. See [69] for proofs of their equivalences; we will not cover those
here for brevity.

There is a close relationship between smooth vector fields and foliations. This
is because an equivalent definition of a foliation is;

Definition 7.1.4 (Regular Foliation (Distribution)).Definition of a
Regular Foliation
(Distribution)

Given a manifold M, a
distribution D on M is a smooth subbundle of the tangent bundle on M. A
distribution is integrable if sections of D are closed under the Lie bracket2.

A k−dimensional foliation on M is an integrable distribution D on M of rank
k.

A smooth section of a tangent bundle is a smooth vector field on a manifold. A
k−dimensional subbundle can be specified by a k−dimensional vector subspace
of the tangent space at each point m ∈M; the smoothness requirement asks
that as we move along the manifold, this vector space also moves smoothly.
Thus, smooth subbundles allow us to define smooth vector fields on M. The
integrability of a distribution means that the vector subspaces are in fact the
tangent spaces of a submanifold of M; the dimension of this submanifold is
clearly equal to the dimension of the vector subspace; k. This submanifold
is called the integral manifold. The integral manifolds of a distribution are
precisely the leaves of a foliation.

Regular foliations can also be defined by submersions;

Definition 7.1.5 (Regular Foliation (Submersions) [69]).Definition of a
Regular Foliation
(Submersions) [69]

Consider an open
cover {Ui} on a smooth M of dimension d. On each Ui, define a submersion
si : Ui → Rq such that there exists a necessarily unique diffeomorphism,

γij : sj(Ui ∩ Uj)→ si(Ui ∩ Uj),

with,
γij ◦ sj |Ui∩Uj = si|Ui ∩ Uj .

2This is a result of Frobenius Theorem; see Theorem 19.12 of [58]

Section 7.1 Foliations 111

Furthermore, these diffeomorphisms satisfy the Haeflinger Cocycle [34]

γij ◦ γjk = γik.

The collection of submersions is a foliation of dimension d− q.

The submersions here define the projection maps of points onto the leaves that
they belong to. The diffeomorphisms are the maps h1 in Definition 7.1.1.

A key feature of a regular foliation is that the dimension of the leaves is constant.
In this case, the leaves create a partition of the manifold that looks similar
to how we described parallel spaces. However, a generalisation of this exists,
called a singular foliation [102, 98], which allows us to write tessellations, and
combinations of the two styles of partitioning in the same language.

Definition 7.1.6 (Singular Foliation [98]). Definition of a
Singular Foliation

[98]

If M is a smooth manifold of
dimension d with an atlas Am, a singular foliation is a partition of M into
immersed, connected submanifolds of non-constant dimensions. There exists
an atlas of distinguished charts, where for each x ∈M there exists a chart ϕ
such that:

a) if x ∈ U , then ϕ : U → (U1 ⊆ Rd−n) × (U2 ⊆ Rn), where n is the
dimension of the leaf containing x, and U1 and U2 contain 0,

b) ϕ(x) = (0, 0), and,

c) if L is a leaf, then L ∩ ϕ−1(U1 × U2) = ϕ−1(l × U2), where l = {w ∈ U1 :
ϕ−1(w, 0) ∈ L}.

It should be noted that foliations, in general, can have complicated topologies
and properties on their leaves, and spaces of leaves [80, 13, 55].

Foliations, particular singular foliations can be generated in many ways. For
example, this is of great importance to the field of geometric control theory,
where singular foliations are used to describe solvable families of control
strategies [47]. Several results in the study of singular foliations [53] were derived
for this; it has been shown in an Orbit Theorem [47], that orbits of families of
vector fields, under certain conditions generate singular foliations. Since we
can use such families of vector fields to generate (local) diffeomorphisms, they
can give us a notion of relatedness. More simply however, it is known that the
locally free action of a Lie group produces a regular foliation [13, 54]. Let us
look at some examples of foliations.

Example 7.1.1: Any submersion s :M→N on a manifold M can produce
a d− n foliation [13, 69], where n is the dimension of N . The leaves are the
connected components of the fibres of s.

Take the sinusoidal architecture from Example 3.1.2. We showed in Section 3.2
that the model space for this architecture is S×R. The submersion S×R→ R
generates a foliation where each leaf is S, and is given by S× {x ∈ R}. ▲

112 Foliations and Transfer Chapter 7

Example 7.1.2: Perhaps the simplest example of a foliation is the 1-dimensional
foliation on R2 given by the submersion,

sR2 : R2 → R;
x 7→ sR2(x) = pr1(x).

Here, there is only one open set, the entirety of R2. The leaves are simply
the straight lines spanned by the second coordinate, at each value of the first
coordinate. This is a trivial foliation. ▲

Example 7.1.3: A singular foliation of R is the partition {(−∞, 0), {0}, (0,∞)}.
▲

Example 7.1.4: A singular foliation on R2 can be defined by the circles at
center x0, of any radius r ≥ 0. Each circle is then a leaf. When r > 0, the
leaves are 1-dimensional. When r = 0, the leaf is the 0-dimensional point
x0. ▲

7.2 Relatedness from Foliations
Suppose we are given a task space T, which we write as a finite dimensional
smooth manifold. We can then define a notion of transfer on this by defining
a foliated structure Fk, regular or otherwise, on T. The following theorem
shows that, given any foliation, we can construct a set of pseudogroups of
transformations on t that can behave as a notion of relatedness.

Theorem 7.2.1.Relatedness from Fk Given a leaf L of a foliation Fk on a manifold M, there
exists a (pseudo)group of transformations that act transitively on L. Then the
collection of such (pseudo)groups over all leaves of Fk is a notion of relatedness.

Proof. We know that a foliation creates a partition of the manifold. If we
can show that each leaf is the orbit of its own pseudogroup, the conditions of
Definition 6.3.4 will be satisfied.

Recall that a leaf L is an immersed, connected, smooth submanifold of a
manifold on which Fk is defined [58, 98].Further, assume that L has a dimension
of d.

Transformations
defined by a global
flow in Rd

Let us first look at the Euclidean space Rd. Let us equip Rd with the standard
frame. The standard frame V = (V1, ..., Vd) is a collection of vector fields Vi,
where the j-th component of the vector Vi(x) is given by V j

i (x) = δj
i for x ∈ Rd.

Note that since V is a global frame, we have that (V1(x), ..., Vd(x)) is a basis
for the tangent space at x ∈ Rd.

We know that V is a global frame, and that each Vi is a complete vector field.
Thus the global flow υi : R× Rd → Rd exists. Then, υi(t) : Rd → Rd, for some

Section 7.2 Relatedness from Foliations 113

t ∈ R is a diffeomorphism. We define the following map,

τ∆ : Rd → Rd

x 7→ τ∆(x) = υd(prd(∆)) ◦ ... ◦ υ1(pr1(∆))(x).
(7.1)

where ∆ ∈ Rd. This map moves a point x ∈ Rd to x + (pr1(∆), ...,prd(∆)).
For all ∆ ∈ Rd, the transformations τ∆ form an additive group. Its inverse is
given by,

τ−1
∆ : Rd → Rd

x 7→ τ−1
∆ (x) = υd(−prd(∆)) ◦ ... ◦ υ1(−pr1(∆))(x)

Thus
τ−1

∆ (x) = τ−∆(x)

Furthermore, this group is transitive in Rd, since we can find a transformation
from any point x ∈ Rd to any other point y ∈ Rd. Suppose x = (x1, ..., xd) and
y = (y1, ..., yd). The following is true:

y = υn(yn − xn) ◦ ... ◦ υ1(y1 − x1)(x) = τx−y(x);

let us denote this as a transformation τxy. Note that there is an inverse
τ−1

xy = τyx = υn(xn − yn) ◦ ... ◦ υ1(x1 − y1), where,

x = υn(xn − yn) ◦ ... ◦ υ1(x1 − y1)(y).

Thus, given the coordinates of any two points, we can construct a diffeomor-
phism between them using the standard frame, written in terms of compositions
of flows of vector fields.

Foliated Atlas of
Coordinate Balls

Next, we identify some properties of the topology on L. Assume that L has a
subset topology derived from the foliation [13]. From [58, Theorem 1.10], we
know that L has a countable topological basis B of coordinate balls. Take the
domains of the charts of Fk restricted to L (denoted by Fk|L); these are open
subsets of L, and form an open cover. We create a refinement of this cover,
where for each domain U ∈ Fk|L, we find BU ⊆ B where

⋃
Bk

U ∈BU
Bk

U = U . By
restricting the chart maps to the appropriate Bk, we have an atlas on L made
up of coordinate balls. Denote this as AB = {(B, ϕ)}.

Notation. In the notation AB = {(B, ϕ)}, we have suppressed any mention
of the original foliated atlas, since it suffices to work with AB on the leaf.
It is assumed that ϕ was constructed from the appropriate chart map in
the original foliated atlas.

Further, if we write X ∈ A, where X is a set, and A is an atlas, we mean
the domain of a chart in (X,ϕ) ∈ A. Thus, B ∈ AB is the domain of
(B, ϕ) ∈ AB.

114 Foliations and Transfer Chapter 7

By definition, we know that any coordinate ball B is homeomorphic to an open
ball Br

Rd in Rd. By ϕ, let us denote homeomorphism such that the center of
B maps to 0 in the coordinate space. For any (B, ϕ) ∈ AB, suppose that the
center of B is denoted is denoted by cB. Then, let ϕ be defined by,

ϕ : B → Br
Rd

x 7→ ϕ(x) = ϕ(x)− ϕ(cB).

Notation. Br
Rd is an open ball in Rd of radius r > 0. This does not refer to

the previous notation Bk
U .

Thus, let us now work with the atlas AB = {(B, ϕ)}, where the coordinates of
every coordinate ball is centered at 0 ∈ Rd.

As a final remark, we also know that L is connected. Thus, given any two
points on p, q ∈ L, we can find a sequence B1, ...,BN ∈ B such that p ∈ B1,
q ∈ BN , and Bn∩Bn−1 ̸= ∅ for N ≥ n ≥ 2. One can think of this as a sequence
of connected coordinate balls that connect p and q.

Transformations on
coordinate balls

Consider the chart (B, ϕ) ∈ AB. Each standard ball ϕ(B) is itself homeomorphic
to Rd via a map such as,

h(xi) = xi

r − ||x||
= yi, (7.2)

for any x = (x1, ..., xi, ..., xd) ∈ Br
Rd and y = (y1, ..., yi, ..., yd) ∈ Rd.

Note that h exists for each of the coordinates. The inverse of this map is given
by,

h−1(yi) = ryi

1 + ||y|| = xi.

Note that these maps are smooth. Then, we can construct a diffeomorphism,
for ∆ ∈ Rd as,

π∆ : B → B
p 7→ πB

(∆(p) = ϕ−1 ◦ h−1 ◦ τ∆ ◦ h ◦ ϕ(p).
(7.3)

The inverse of this map is,

π−1
∆ (p) = ϕ−1 ◦ h−1 ◦ τ−1

∆ ◦ h ◦ ϕ(p). (7.4)

Then, for any p, q ∈ B, we can construct a map πpq,

πpq(p) = ϕ−1 ◦ h−1 ◦ τxy ◦ h ◦ ϕ(p) = q,

where x = h ◦ ϕ(p) and y = h ◦ ϕ(q). The inverse π−1
pq = πqp of this map from

q ∈ Bk to p ∈ B is given by,

πqp(q) = ϕ−1 ◦ h−1 ◦ τyx ◦ h ◦ ϕ(q) = p.

Section 7.2 Relatedness from Foliations 115

For all ∆ ∈ Rd, the set of all transformations π∆ is then a group of diffeomor-
phisms that acts transitively on B. Let us denote this group as ΠB. We have
effectively used the homeomorphism defined in Equation (7.2) to move the
transformations on Rd given in Equation (7.1) to transformation in B.

Pseudogroup of
transformations

An open subset of B is denoted as UB. We will also denote a finite sequence
of elements in Rd as SRd = {x1, ..., xN}, and a finite sequence of coordinate
balls SUB,B = {UB,B2, ...BN}, where Bj ∈ AB. Further, B ∩ B2 ≠ ∅, and
Bj−1 ∩Bj ≠ ∅ for j ≥ 3. Finally, let us denote by πB

(x1,...,xd) a map of the form
Equation (7.3).

We define a set of transformations Π on the leaf L, where each π ∈ Π is a map,

π
SUi,B

SRd
: UB → BN

p 7→ π
S

UB,B

SRd
(p) = πBN

xN ◦ ... ◦ πB2
x2 ◦ πUB

x1 (p),

where xj is such that for p ∈ Bj−1 ∩ Bj , π
Bj

xj (p) ∈ Bj ∩ Bj+1. Π contains all
transformations acting on the leaf L that can be written as finite composi-
tions of maps from any ΠB, as long as the domains and codomains of each
transformation make sense.

We now show that Π satisfies each condition in Definition 6.3.5.

a) Satisfied by definition, since dom(πi) = Bq, πi|U for U ⊂ B exists.

b) First, let us denote by π1, π2 ∈ Π transformations, where dom(π1) = U1
and dom(π2) = U2. Further, suppose we want a transformation map π,
with domain dom(π) = U1 ∪ U2. and π|Ui = πi. Now for such a map to
exist, it must be the case that there exists B ∈ AB, where U1, U2 ⊆ B.
This is because, in Equation (7.3), the homeomorphisms h are defined
for a particular B. Thus, to talk about restrictions, we can only consider
domains in a particular B.

Now, consider U =
⋃

i∈I Ui. Further, SU,B and SUi,B, differ only in the
first element, and of course Ui ⊆ U . Now if πSU,B

SRd
is a transformation

such that πSU,B

SRd
|Ui = π

SUi,B

Si
Rd

, for any i ∈ I, it must be that SRd = Si
Rd .

Otherwise, the restriction would not work. Therefore, if πSUi,B

Si
Rd

∈ Π for

any i ∈ I, πSU,B

SRd
∈ Π.

c) Since all compositions are included, this follows from definition.

d) By setting xi = 0 for all xi in SRd , we obtain the identity maps.

e) Follows from Equation (7.4).

TransitivityFinally, we must show that Π is transitive. We do this by showing constructively
that between any two points on L, we can find a map between them in Π.

116 Foliations and Transfer Chapter 7

Recall that due to the connectedness of L, we can find a sequence {Bn}pq

of coordinate balls that connect two points p, q ∈ L. Take the intersection
Bn ∩ Bn−1. We will denote by pi,i−1 to be any point in this intersection. Then
we can define a transformation πpq between points p, q ∈ L as,

πp,...,pi,i−1,...,q(p) = πpn,n−1,q ◦ ... ◦ πp,p2,1(p) = q.

Its inverse is given by,

πq,...,pi,i−1,...,p(q) = πp2,1,p ◦ ... ◦ πq,pn,n−1(q) = p.

We know that some foliations are naturally defined by the actions of Lie groups.
In this theorem, we showed that all foliations create a notion of relatedness, at
least in terms of pseudogroups. ■

The converse is also possible, where we define a notion of relatedness, and
derive a foliation from it, as long as the orbits of the groups in the notion of
relatedness are immersed, connected submanifolds. For example, the orbits of
a free action of a Lie group forms a foliation [13, 69].

Correspondence
between foliations
and notion of
relatedness

Thus, using foliations, we can go either way. If a notion of relatedness that is
thought to be relevant to a particular problem of learning to transfer is known,
we can apply it to generate a structure on a task space that reflects the induced
notion of transfer. Alternatively, perhaps, a foliation can be learned, or simply
defined, from which a notion of relatedness can be derived, for purposes of
interpretability and understanding.

7.3 The leaf space and learning to transfer
In Section 6.4.1, we could reconcile the structure on the task space to suit
our needs. Let us then look at the model space. Recall that we assume that
the model space is a smooth d-dimensional manifold. We give this space an
arbitrary regular3 k-foliation. Since a foliation is specific atlas, we know that
locally (in an open set), the manifold looks Euclidean, and the foliation creates
a rectification.

Global and task
specific parameters

This rectification can be interpreted as a separation of the parameters of a
model space into global and task specific parameters. The global parameters
are locally equal for all tasks in a set of related tasks (in this case, the leaves),
and the task specific parameters identify the solution to a task within this
set. The global parameters, over the entire model space are equal, up to chart
transitions.

For a U ∈ Θκ, where U is a subset of a chart domain, Definition 7.1.1 told
us that ϕ(U) = (U1, U2), where U1 ⊆ Rd−k, and U2 ⊆ Rk. ϕ−1({a} × U2), for
a ∈ U1 is a plaque. If each such plaque is a component of a unique leaf a, then

3We will assume that foliations we use are regular henceforth, since they can be difficult
to deal with without the additional complexity of a singular foliation.

Section 7.3 The leaf space and learning to transfer 117

perhaps we can consider moving through U1 as moving through leaves, locally.
Thus, in this case, we could consider using algorithms such a gradient descent
for learning to transfer algorithms.

Nasty topologies of
space of leaves

However, the space of leaves is the quotient space we obtain by identifying all
points that belong to a leaf, and giving it the quotient topology. Generally,
the structure of the space of leaves can be complicated and nasty, and might
not even carry a manifold structure. Let us focus on regular foliations. An
example where the space of leaves is complicated is the images of all curves on
a torus of the form

γb(t) = (eit, ei(at+b)),

for b ∈ R. If a is irrational, each leaf is dense in the torus because the curve
will never close. In the Reeb Foliation [79, 13] on S3, the space of leaves is
non-Hausdorff [13].

Classifying the
topology of the space

of leaves

There is some hope however. It is possible to classify the topology of the
space of leaves. Suppose we have a regular foliated manifold (Md,Fk). A
submanifold N ofM is called a transverse section if, for every leaf it intersects,
the tangent space of N is complementary to the tangent space of the leaf.
Thus, at the points of intersection, dim(N) + k = d. A simple example of
a transverse submanifold can be constructed as the following. Take a chart
(U, ϕ) ∈ Fk. Then, we know that ϕ−1({a} × U2) (as above) is a plaque. Then,
for b ∈ U2, ϕ−1(U1 × {b}) is a transverse section.

Let us denote by N ∩ L the set of all intersections with a leaf L. According to
[13, Theorem 4], there are three possible topological outcomes for this set:

a) N ∩ L is discrete, where each element of N ∩ L is an isolated point,

b) all elements of N ∩ L is in the non-empty interior of the closure N ∩ L,

c) neither of the above; thus the closure (N ∩ L) has an empty interior, and
N ∩ L is not discrete.

Case (b) corresponds to a leaf that is locally dense in the manifold, such as in
the example of the torus above, when a is irrational. Case (c) is a leaf that is
nowhere dense, but its topology differs from the subset topology [85]4. Such a
leaf is called exceptional. In contrast, under Case (a), the leaf is described as
proper, and is nowhere dense and carries the subset topology.

In the remainder of this thesis, we present examples of learning to transfer
methods from the literature. For this, it suffices that we assume that we learn
in the domain of a single chart, and that in this chart, each plaque corresponds
to a unique leaf. This makes the formulation much simpler than if we had
considered a nice, yet more general foliation. Studying the conditions under
which such a foliation allows for the use of algorithms such as gradient descent
is left as future work.

4Examples of foliations with exceptional leaves can be found in [85, 106].

118 Foliations and Transfer Chapter 7

This page was left intentionally blank.

119

Chapter 8

Examples

Having defined learning to transfer, and that we can represent it using
foliations, we now show how examples of popular methods from the

literature that carry out transfer can be expressed in the language of our
framework.

Useful assumptionsWe recall the major assumptions we had made. We diminished the complexity
of the manifolds that were the model and task spaces by restricting them to
open neighbourhoods. Any chosen foliation on the model space is assumed
to contain a chart that is a superset of this open set, and that the plaques
correspond to unique leaves; the structure of the task space is assumed to have
been derived from the chosen loss functions and learning algorithms, such that
they are well behaved.

Overview of proofsThe general strategy we use in this chapter is to first show that the learning
technique used implicitly defines a foliation on the model space. Since we assume
to be working on a single chart, we simply show that the learning technique
breaks the parameter space of the model into global and task specific parameters.
In addition, we do not need to consider symmetries in the parameter space,
particularly those that lead to connected subsets of symmetric parameters (such
as the non-negative homogeneity of ReLU). This is because in the presented
work use gradient descent; it is expected that gradient descent would account
for these, since the gradient would be constant along symmetric points.

We then show that the learning algorithm is equivariant w.r.t. this implicit
foliation, and the induced structure on the task space. In fact, this equivariance
follows trivially due to our assumption that the structure on the task space is
a representation. Thus, these algorithms carry out learning to transfer as per
Definition 6.4.6.

As future work, we propose to look at devising learning to transfer techniques
that do not simply make assumptions about the task space in the ways men-
tioned above. Could we exploit some known structure, such as knowledge of
how related tasks transform?

The techniques we discuss below is not an exhaustive list; we believe that it
is possible to cast techniques in continual learning [23], domain adaptation

120 Examples Chapter 8

x

t1 t2 t3

(a) Hard parameter sharing in mul-
titask learning using a neural net-
work. The black nodes represent
nodes that are shared between all
tasks, whereas the gray nodes are
task specific.

x

y

(b) Weight sharing in inductive
transfer learning. The black nodes
represent nodes that are fixed dur-
ing learning the new task, whereas
the gray nodes are updated.

Figure 8.1. Example network architectures for multitask learning and inductive
transfer learning.

[118, 73], self-supervised learning [117], variational autoencoders [49], and
others in this framework. This will be left for future work.

8.1 Multitask Learning
Multitask learning (MTL)[14] is a learning paradigm where several related
tasks are solved in parallel to learn a shared representation. In the context of
the thesis by Caruana [14], tasks are related if learning them together provides
an improvement to their generalisation performance. MTL is described as an
approach to inductive bias training.

A key feature that enables MTL to lead to improved generalisation is the
parameter sharing; Figure 8.1a gives an example of a network architecture that
allows for parameter sharing. Here, suppose that in an open set U ⊆ Θ = Rd,
where Θ is the parameter space of an architecture κ. d is the number of
parameters. It is clear that U decomposes as U1 × U2, where each Ui ⊆ Rki

and k1 + k2 = d.

Hard parameter
sharing in MTL

Let us assume that the task space is equal to U ; each {a} × U2 is a set of
related tasks. Then, given an appropriate loss function L, a gradient descent
learning algorithm LMTL would proceed as follows. Given a collection {ti}mi=1
of related tasks, and a collection {θi}mi=1, where we assume that the first k1
components are equal, MTL computes a MTL loss as,

LMTL
(
{θi}mi=1, {ti}mi=1

)
=

m∑
i=1
L(θi, ti).

Section 8.2 Transfer Learning 121

Note how this is similar to example transfer loss we gave in Example 6.8. For
j = 1 to j = k1, the flow that gradient descent follows is given by υj

∂jLMTL
,

where ∂jLMTL is the partial derivative of the negative loss w.r.t. the j−th
coordinate. Assuming initial parameter values {θ0

i }mi=1 with such properties,
the j−th component of LMTL(ti) is computed as,

prj ◦ LMTL(ti) = lim
t→∞

υj
∂jLMTL

(prj(θ0
i), t),

for j = 1 to j = k1. Note that for this range prj(θ0
i) are equal over all i.

Furthermore, ∂jLMTL are equal too, due to the sum in LMTL. Thus, these
components of the output models will be equal to each other.

Notation. pr1 denotes the projection map on to the first coordinate. More
generally, pri denotes the projection to the i−th coordinate.

For the remaining parameters, j = k1 + 1 to j = d, the update rules are,

prj ◦ LMTL(ti) = lim
t→∞

υj
∂jLti

(prj(θ0
i), t).

Note that the partial derivatives used are task specific, since they are the
partial derivatives of Lti . Due to this, these components of the parameter are
allowed to freely change.

Trivial foliation of
MTL model

This shows the hard parameter sharing of MTL; the first k1 components of
the parameter vector are constrained to change together. The decomposition
of U into U1 × U2 is exactly the decomposition in Condition (a) of Definition
7.1.1. We do not need to worry about the second condition, since we do not
carry out chart transitions in this setting. Thus, trivially, the MTL technique
had proposed a foliation.

An implicit assumption of MTL is that {ti}mi=1 is a collection of related tasks.
Due to the parameter sharing, the {LMTL(taski)}mi=1 also belongs to a leaf
of the foliation. If we assume that T has the same structure as Θ, then the
equivariance of the induced learning algorithm follows. This is because the
learning algorithm is now an exact representation. Thus, each task has a unique
model, and the assumed correspondence between the notions of relatedness in
the task and model spaces implies the necessary result trivially.

8.2 Transfer Learning
These types of models are commonly seen in the transfer learning setting [74],
and in some meta learning models, such as [86, 76, 36, 48]. These models
simply take the direct definition of the local coordinates of a foliation, and
use that as the definition of the model. Figure 8.1b shows an example neural
network topology of such a model.

In inductive transfer learning, a common approach is to pretrain a model on
a large dataset to obtain optimal parameters. Suppose these are θ. Then,

122 Examples Chapter 8

T

t1

t4

t2

t3
ϵ

similar

related

Figure 8.2. The distinction between similarity and relatedness. Similarity is
defined in terms of an ϵ-ball around a particular element. Here, points t2 and
t3 are similar to t1. On the other hand, relatedness is defined in terms of a
transformation set; this relationship is shown as a line joining them. Thus,
tasks t1, t2 and t3 are related to each other. However, t4 is not related to t2
and t1 though they are similar; t3 is not similar to t2 and t1, though they are
related.

given a new dataset, the model is rectified into (θfixed, θretrain); the θretrain

components are retrained while the θfixed components are kept fixed. We see
immediately that this is simply describing the local coordinates of a foliation.

That is, in a local open set U ⊂ m, we have a chart ϕ such that ϕ(m) =
(θfixed, θretrain), where θfixed ∈ Ra, θretrain ∈ Rb and a + b = n, the total
number of parameters. Each θfixed defines a local plaque of dimension b.
During transfer, since θfixed remains constant, the retraining occurs on this
plaque.

In these methods, we learn the set of related models by simply solving the
single task problem, and then taking the leaf on which it lies in the foliation
of the model space. As with MTL, the equivariance follows trivially by the
assumed structure of the task space.

The key difference between transfer learning and MTL is that MTL explicitly
defines a transfer loss, whereas transfer learning simply learns over a single
task. An alternative view of transfer learning is to see it as learning a large,
single model that can act as an initialisation, where the solutions to new tasks
are close to this model. This is another way of producing a notion of transfer.

Definition 8.2.1 (A Set of Similar Tasks).Definition of a A Set
of Similar Tasks

A metric ρ on T is called a notion
of similarity. t1, t2 ∈ T are said to be similar if ρ(t1, t2) < ϵ for ϵ > 0. Then,
given t ∈ T, the set {s ∈ T|ρ(s, t) < (ϵ > 0)} is a set of tasks similar to t.

If we choose a countable number of reference tasks on T, then a notion of
similarity can induce a partition on T in the way of a Voronoi diagram [78].

Section 8.3 Meta Learning 123

Θ

(C1, ..., CK)

(θ, c1, ..., cK)

c2

c4c5

κθ(x1)

κθ(x2)

κθ(x3)

κθ(x4)

κθ(x5)

κθ(x6)

κθ(x)

Figure 8.3. A foliation in the space (θ, c1, ..., ck, ..., cK) gives us what we expect
from a prototypical network. For a given dataset D, we find θ during the initial
training phase. For a given task, which has classes from {2, 4, 5} ⊂ {1, ...,K},
the values (c2, c4, c5) define the distribution over the class probabilities of a
particular input x. These values are calculated from a small task-specific
dataset Dt = {(x1, 2), (x2, 2), (x3, 4), (x4, 4), (x5, 5), (x6, 5)}, in this example.

That is, we can write an equivalence relation, given a set of reference tasks
RT = ti ∈ Ti∈I , s1 ∼ s2 ⇐⇒ arg minti∈RT

ρ(ti, s1) = arg minti∈RT
ρ(ti, s1).

Such a partition would look like the tesselation in Figure 7.1. Since this is a
partition, there is a notion of relatedness that can be associated with it (for
example, by trivially considering the permutation groups on each element of
the partition).

Transfer via similarity occurs when we move to a point that is close to a
reference starting point, whereas transfer by relatedness moves along a subset
of all possible directions of variation. The differences between these methods
of transfer is visualised in Figure 8.2

Transfer learning could be considered to transfer according to both methods.

8.3 Meta Learning

8.3.1 Prototypical Networks: Simple Meta-Learning
Prototypical Networks are used for few-shot classification [97]. It learns an
embedding function which computes a distribution over the different classes of
the problem. The embedding function is used to compute a prototype vector
in the embedding space for each class. A distribution over the classes for a new
query point is then computed by running a softmax over the distance from the
prototypes to the embedding of the new data point.

This algorithm then carries out few-shot learning by generating the prototypes
by applying the embedding function on the dataset given for the new task,
and immediately computing the predictions on queries. During training, each
iteration involves choosing a subset of the classes and their corresponding data,
and optimising the embedding function to minimise the negative log likelihood
of the true predictions.

124 Examples Chapter 8

To be more precise, suppose we are given a dataset D = {(xi, yi)}i∈I , where
xi ∈ X and yi ∈ {1, ...,K} is a class identity. A classification task t is given by
choosing nt ≤ K classes from {1, ...,K}, denoted as Yt, to generate a dataset
Dt =

⋃
k∈Yt
{(xi, yi) : (xi, yi) ∈ D, yi ∈ Yt}.

The embedding function is a map κθD : X → Rm, where θ ∈ Θ are the
parameters of this function. For the k-th class in Yt, the prototype is given by,

ck = 1∣∣ Sk

∣∣ ∑
(xi,yi)∈Sk

κθ(x)(xi). (8.1)

Sk is the set of data points given for the class k ∈ Yt. The probability of a
particular class, given a distance metric ρ on the embedding space, is:

p(y = k
∣∣ x) = exp(−ρ(κθ(x), ck))∑

k′∈Yt
exp(−ρ(κθ(x), ck′)) . (8.2)

In this model, the full parameters that specify a prediction are (θ, c1, ..., cK).
θ corresponds to the global bias that specifies how each input should be
transformed; this is independent of the task that is currently being solved. The
coordinates given by the remaining (c1, ..., ck, ..., cK) specify a distribution over
the particular classes; they are the task specific parameters. Each ck therefore
corresponds to a particular class.

Since for a given task, nt ≤ K, we would be ignoring the ck coordinates that
correspond to classes in the set {1, ...,K}\Yt. This can be done by setting ck

to very high or low values, since then, their contribution to the sum in the
denominator of 8.2 would be negligible.

It should be noted that here, the adaption to the new task is deterministic
and immediate; there is no training (optimisation) required. This approach is
illustrated in Figure 8.3.

The foliation in this setting is given by (θ, c1, ..., cK), where θ identifies the
leaves, and c1, ..., cK corresponds to a task. Since K is finite, the number of
different combinations of tasks is also finite. However, we assume that the
leaves are a manifold. The values of c1, ..., cK that correspond to remaining
possible problems can be thought of as continuous, smooth variations of each
of the classes. These might not be identifiable to humans as a particular type
of object (such as a cat or a dog).

The equivariance follows once again by assuming the structure on the task
space to be that on the model parameter space.

8.3.2 Model Agnostic Meta Learning (MAML)
MAML [29] is a meta-learning technique that has been very popular since it
was derived a few years ago; it is a good example of a method that makes use
of 2 levels of optimisation. For MAML, we are given a set of tasks. Its goal is
to find a common initialisation point, from where following gradient descent (or

Section 8.3 Meta Learning 125

m0

m∗
1

m∗
2

m∗
3

k

k

k

M

Figure 8.4. MAML finds an optimal initial model m0 such that solutions to
other tasks m∗

1, m∗
2 and m∗

3 are k gradient descent steps away.

another gradient based optimisation method) for a fixed number of iterations
will yield a suitable model for each task. MAML does this by optimising the
initial point in a higher level loop, and following gradient descent for a fixed
number of steps starting from this point; see Figure 8.4.

Showing that this type of model uses the structures we have discussed is
difficult. There are also several ways by which we could attempt to show that
MAML implicitly uses a foliation. One such method could be to define the
parameter space of MAML as Θ×Θ. This is similar to the graphical model
used by [32], where it is posed as a hierarchical bayes model. Alternatively, we
could also view it in terms of transfer due to similarity. A more complicated
view could be to make the following conjecture,

Conjecture 8.3.1. We are given a task space T, a model space Θκ and a loss
function L.

Let us assume that the gradient descent algorithm, that for any given initial
model m0 ∈ Θκ, follows the flow υdL(m0, t) of the negative loss differential dL
till t = k is well-behaved, for t ∈ T. For m0, construct the subset Ut of tasks
for which,

|L(mt(k), t)− L(m∗
t , t)| = ϵ,

where mt(k) is the model we obtain by following the flow for k time, m∗
t is

the fixed point of the dynamical system given by the gradient flow of dL, and
t ∈ Ut. Then, we conjecture that Ut is a leaf of a foliation of at least d − 1
dimension, where d is the dimension of T. Different leaves can be obtained by
changing the number of time steps, and keeping ϵ fixed.

The collection of models mt(k) for each Ut then is a leaf on the model space.

The proof of this very general statement is beyond the scope of the present
thesis. We have made the accuracy fixed; in practice, we are okay with models

126 Examples Chapter 8

m∗
1

M

m0

t

t

ϵ

ϵ

m1

m2 m∗
2

Figure 8.5. A pictorial representation of Theorem 8.3.2. The arrows show the
flows, starting at m0 along the positive t direction for each task. Centered at
each m∗

ti , we have drawn some of the level sets of the quadratic loss function,
shown as dashed and dotted circles. The leaf generated by MAML is the solid
circle.

that are at worst of a chosen accuracy; in the view of the foliations, we are
saying that several, neighbouring leaves are good enough for our solution. The
same can be said about stating that we want to reach a sufficiently suitable
solution in at most k steps. It is possible that this requirement ends up creating
a partition of a tesselation; that is we have found a region of similarity.

To study this, we would need to understand the system of differential equations
given by,

ṁi = −∂iLt(m),

which is complicated in the general sense. We leave this study for future work.

First simple setting However, in order to present an intuition as to why we think the the above would
be correct, we present a very simplified example that illustrates Conjecture
8.3.1. Let us assume that the model space is locally 2-dimensional; that is
ϕ(UΘκ) ⊂ R2, for some chart on the m. Write the same for Ut. Further, make
the very restrictive assumption that the loss function L : UΘκ × UT → R+ is
homogeneously quadratic in both variables. That is, we can write the loss as,

L((m1,m2), (t1, t2)) =
2∑

i=1
(ti −mi)2 (8.3)

Here, we see that changing the task merely changes the position of m∗
t , but

keeps the shape of loss curve over m fixed. The level sets of this system create
circles centered at t; this is shown in Figure 8.5. The loss value at the optimal

Section 8.3 Meta Learning 127

model for a given model is 0. For such as system, we can show the following
theorem:

Theorem 8.3.2. MAML Foliation
(simple)

For a given m0, and a coordinate system centered at m0, the
subsets of T for which the accuracy of the model is a fixed ϵ is given by,

2∑
i=1

t2i = ϵ

e−4k
. (8.4)

Proof. Since the loss function is given by L((m1,m2), (t1, t2)) =
∑2

i=1(ti−mi)2,
assuming that the coordinate system is centered at m0, the vector field on m is
given by,

M((m1,m2)) = (ṁ1, ṁ2) = 2m1
∂

∂m1
+ 2m2

∂

∂m2
. (8.5)

This is a system of differential equations which can be solved to give us a flow
θ(k) = (m1(k),m2(k)); the initial value condition is mi(0) = 0, since we have
centered the coordinate system at m0 = (0, 0).

The flow is given by,
mi(k) = tie

−2tk + ti. (8.6)

Since L(m∗
t , t) = 0, we have that for the m(k) at which

∣∣L(m(k), t)−L(m∗
t , t)

∣∣ =
ϵ, L(m(k), t) = ϵ. Thus,

2∑
i=1

((tie−2tk + ti)− ti)2 = ϵ. (8.7)

This can be rearranged to produce,
2∑

i=1
t2i = ϵ

e−4k
. (8.8)

■

Here, (t1, t2), are the coordinates of each of the dimensions of a point t ∈ T.
k denotes a variable that controls the radius; this k corresponds to time that
one must follow the flow of a task starting at m0 to end up at the model that
is of ϵ accuracy. The following corollary can then be shown:

Corollary 8.3.3. Given a task t = (t1, t2) ∈ t, a chosen accuracy ϵ ∈ [0,∞],
and an initial model m0, the time k needed to get to a model mt for which the
accuracy

∣∣ L(t,mt)− L(m∗
t , t)

∣∣ = ϵ is given by,

kϵ = 4 ln
(

ϵ

t21 + t22

)
, (8.9)

and the model coordinates mt = (m1,m2) are given by,

mi = −ti
(

ϵ

t21 + t22

)
+ ti. (8.10)

128 Examples Chapter 8

Proof. Equation (8.7) can be solved for a k, which gives us,

kϵ = 4 ln
(

ϵ

t21 + t22

)
. (8.11)

This can then be plugged into Equation (8.6) to give us:

mi = −ti
(

ϵ

t21 + t22

)
+ ti. (8.12)

■

These results show that the subsets that satisfy the criterion for a set of
related tasks under the MAML scheme are circles in R2, for the given problem
specification; this is a regular foliation on R2/0, or a singular foliation on R.
These results can be extended to higher dimensions, and to loss functions that
aren’t symmetric; for example, if the level sets look like ellipsoids, then we can
expect that leaves would be ellipsoids too.

8.4 Reinforcement Learning
This section summaries some results from [76]. This paper studies a multi-task
reinforcement learning (MTRL) setting, where we want transfer to occur in
a specific way. The space of tasks consisted of reinforcement learning (RL)
tasks, where the variation could occur in either the transition dynamics, or
the reward function. A particular set of related tasks that we looked at were
variations of the balancing cartpole.

The cartpole1 system is a pendulum attached to a cart that can be moved along
the x-axis (see Figure 8.7). To move the cart, a fixed force, either positive or
negative is applied to the cart, causing the cart to accelerate, as well as swing
the pendulum. In the particular variation of the problem we looked at, the
cartpole begins with the pendulum in an upright position in the middle of the
x-axis (see Figure 8.7), and the RL agent must continue to balance the pole
for a period of time at a fixed point.

The variations to the transition dynamics we obtained by varying the mass
of the cart. As can be imagined, a higher mass is harder to move, making
a balanced position more stable, but also making a failed attempt harder to
correct. The reward function was varied by changing the fixed point around
which to balance the pole. Recall that the initial point is fixed, which means
that the agent must move the balance point to the necessary area using its
actions. The reward function counted the number of time steps for which the
tip of the pole was within a small bubble around the balance point; in other
words, this was a sparse reward.

1https://gym.openai.com/envs/CartPole-v1/

https://gym.openai.com/envs/CartPole-v1/

Section 8.4 Reinforcement Learning 129

The set of all variations above created the set of related tasks for our setting.
The particular space of tasks is assumed to be the tasks for which the chosen
policy architecture could be a solution for. Instead of approaching this problem
as a typical multi-task problem, where there is a single vector of parameters
that are the task specific parameters, we used several task specific parameters
that correspond to each direction of variations.

The goal here was to identify if exploiting known structure about how the tasks
are distributed can lead to interpretable, and fast learning, and transfer.

8.4.1 Practical Implementation
Instead of approaching this from a manifold perspective, we opted to use
the variational inference view of reinforcement learning [60]. We start by
introducing a random variable R that denotes whether the trajectory2 τ :=
(i, j, s0, a0, z0, g0, . . . sT , aT , zT , gT) is optimal (R = 1) or not (R = 0). T
is the length of the episode; we assume this to infinite. The likelihood of
an optimal trajectory is defined as p(R = 1|τ) ∝ exp

(∑T
t rj(at, st)

)
. The

trajectory assuming optimality is denoted by p(τ |R = 1). If τ is assumed to
be a latent variable with prior probability p(τ), we specify the log-evidence as
log p(R = 1) = log

∫
p(R = 1|τ)p(τ)dτ . Introducing a variational distribution

on trajectories q(τ), which combined with Jensen’s inequality provides the
Evidence Lower Bound (ELBO) Eτ∼q(τ) [log p(R = 1|τ)p(τ)− log q(τ)].

The generative model of a trajectory is given by Figure 8.6. The generative
model is,

p(τ) = p(i)p(j)p(s0)
T −1∏
t=0

p(zt|i)p(gt|j)p(at|st, zt, gt)Ti(st+1|st, at),

and the variational distribution is,

q(τ) = p(i)p(j)p(s0)
T −1∏
t=0

qδ(zt|i)qω(gt|j)π(at|st, zt, gt)Ti(st+1|st, at).

The conditional distributions qδ(zt|i) and qω(gt|j) imply that these functions
vary only if the transition dynamics, or reward function changes. Thus, we
have 3 zi and gj each. These distributions were chosen to Gaussian, with
diagonal covariance; thus the mean and covariance are the parameters ω and δ.
π is the policy parameterised by θ. This was chosen to be a neural network.
It is also conditioned on the latent variables z and g. Instead of these being
fixed, if we were in a deterministic setting, they are instead sampled from a
distribution. From a foliation point of view, the parameters of this setup would
be (θ, ω, δ), where θ are the coordinates of the leaf.

The objective function is the maximization of the ELBO w.r.t. π, qδ and qω,
2To keep with the technique of [60], we have omitted the rewards in this trajectory.

130 Examples Chapter 8

i

j

s0 s1a0

z0

g0

z1

g1

a1 ...
T T

π π

Figure 8.6. Generative model of trajectories.

which is given by,

Jtij (θ, ω, δ) = E
q(τ)

[∞∑
t=0

γt
(
rj(st, at)−

1
αd

log qδ(zt|i)
p(zt|i)

− 1
αr

log qω(gt|j)
p(gt|j)

− 1
απ

log πθ(at|st, zt, gt)
p(at|st, zt, gt)

)]
.

(8.13)

Scalars 1
αd
, 1

αr
and 1

απ
to weight each information term, and γ is the discount

factor, since we assume that T →∞. The first term of this objective can be
interpreted as the typical RL objective to maximize the long-term returns. The
next two terms correspond to objectives for latent variables.

The learning algorithm we chose to solve this objective for the cartpole problem
was REINFORCE [123]. REINFORCE uses the reparameterisation trick to
obtain Monte Carlo estimators for a RL objective. Applying this to 8.13, we
obtain,

L(θ, δ, ω) := 1
MIJ

M,I,J∑
m,i,j=1

R0(τ i,j
m)− C

αd
Ei[KL(qδ(·|i)||p(·|i))]

− C

αr
Ej [KL(qω(·|j)||p(·|j))]

where we have used the following definition of the regularized discounted future
returns,

R̃t(τ i,j
m) =

T −1∑
h=0

γh−t
(
rj(si,j

h,m, a
i,j
h,m)− 1

απ
log πθ

(
ai,j

h,m|s
i,j
h,m, zδi

(ϵi,jh,m), gωj (εi,j
h,m)

))
,

and,

C = 1− γT −1

1− γ .

Section 8.4 Reinforcement Learning 131

Left (0) Middle (1) Right (2)

Figure 8.7. The different goal positions used in the training tasks of the cartpole
problem for DSE. Note that the masses of the cart also change, but are not
depicted here. The cartpoles always started in the middle position (with some
noise).

As a practical note, we made use of Pop-Art [113, 40] to adaptively normalise
the discounted rewards to have the standard Gaussian. This was because,
summing over tasks with sparse rewards caused the algorithm to not try to
solve all the tasks, but to only solve those that it detected a reward for faster.

The algorithm for DSE-REINFORCE is given below:

Algorithm 8.4.1 DSE-REINFORCE
1: For each i, j, initialize parameters δi, ωj and θ
2: for each iteration do
3: for each i, j do
4: Collect trajectories {τ i,j

m }Mm=1
5: end for
6: for each i, j do
7: δi ← δi +∇δi

L(θ, δ, ω)
8: ωj ← ωj +∇ωjL(θ, δ, ω)
9: end for

10: θ ← θ +∇θL(θ, δ, ω)
11: end for

8.4.2 Experiments
We carried out 3 sets of experiments on the cartpole. For the training phases,
we created 9 sets of variations using 3 of each dynamics and reward con-
texts. The masses chosen were {0.2, 1.0, 2.0}, and the goals were to go to the
{left,middle, right}, as in Figure 8.7. These were implemented by extending
the provided environment in Open AI gym. Each episode lasted for 300 time
steps.

Learning performanceThe first set of experiments was to study the learning behaviour, and the
performance of the algorithm. For this, we trained all tasks defined above,
and compared with the following baselines. The first was to train on all tasks
using a single embedding, without any disentangling of the dynamics and
rewards. Secondly, we trained each task independently, without parameter
sharing using a vanilla REINFORCE method. Finally, we compared our
algorithm to a personal implementation of Distral [107]. The hyperparameters

132 Examples Chapter 8

0 5000 10000 15000
of Trajectories

0

100

200

300

400

500

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

0

100

200

300

400

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

0

100

200

300

400

500

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

200

400

600

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

0

100

200

300

400

500

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

0

100

200

300

400

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

200

400

600

To
ta

l R
ew

ar
ds

0 5000 10000 15000
of Trajectories

0

100

200

300

400

To
ta

l R
ew

ar
ds

dynamics: 0
dynamics: 1

dynamics: 2
rewards: 0

rewards: 1
rewards: 2

algor: single
algor: DSE-REINFORCE

algor: Independent
algor: Distral

Figure 8.8. Comparison of DSE-REINFORCE against other algorithms. The
columns represent the reward conditions, and the rows the dynamics conditions,
all in ascending order.

and architectures for these can be found in Appendix C.

The results for this set of experiments is shown in Figure 8.8. These show the
averaged reward curves over 4 random seeds. We see that our method performs
better than Distral and the independent methods. The speed of learning over
the latter case shows empirically that the tasks are related, and can share their
data usefully. On average, we performed similarly to methods using a single
embedding.

Structure
preservation of the
latent space

An additional experiment we carried out was to take the mean values of the
latent variable g, and interpolate between then, along the line of best fit. This
is shown in Figure 8.9(d). We then took these interpolated values, and plugged
then into the learned policy, and simulated the trajectories on different the
training masses. Note that in this way, g is not sampled, and z was sampled
from the appropriate latent variable.

The trajectory of the tip of the pendulum over time is plotted in Figure 8.9(e).
We first note that the blue, red and orange paths correspond to moving left,
staying in the middle, and moving right. Then, if we choose intermediate
value, we see that the balancing point moves continuously. That is, there is a

Section 8.4 Reinforcement Learning 133

2 0 2
g dimension 0

-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

g
di

m
en

sio
n

1
(d)

0 100 200 300
Time

-1.0

-0.5

0.0

0.5

1.0

x t
ip

(e)

Figure 8.9. Manual generalisation of reward skill. by choosing the value of g.
(e) contains the trajectories of the tip of the pole corresponding to the value
of g chosen as per (d). The legend of Figure 8.8 applies. The colors in (e)
correspond to the values of g in (d).

topological correspondence between the latent space of the rewards, and the
goals. This is regardless of the fact that the space g is 2-dimensional; it found
a 1-dimensional subspace that behaves in a structure preserving manner.

The final set of experiments tested the transfer capabilities of the learned
solutions. We could only compare with the single embedding baseline, since
the other algorithms did not allow for transfer; this is clearly not possible in
the independent solutions, and the structure of Distral does not provide an
obvious mechanism to identify a set of related models, as we need for transfer.

For this, we still used the same set of nine tasks. We held out a select
number of tasks, and initially trained both algorithms on the remaining tasks.
Then, keeping the parameters θ fixed, and initialising the parameters of the
latent variables on the matching indices, we continued training the variational
distributions on the remaining tasks.

Figure 8.10 shows the two configurations we had chosen. The (6-3) configuration
had an equal number of example cases for each dynamics and goal cases. The
latter is on the opposite extreme, where most cases had only one example.

The initial training results are shown in Figure 8.12. As expected, balancing
in the middle scored the highest reward, since it is the easiest tasks. For the
(6-3) configuration, the other goals behaved similarly, since they are symmetric
goals. In (4-5), balancing to the right scored higher since there were more
example tasks (2), compared to the single example of the left goal.

Figure 8.12 show us the results of retraining. We see here a clear benefit of DSE;
since we have knowledge of which indices of dynamics and rewards contexts are
useful, we can interpretably choose a good starting point for transfer. In fact, it
could be argued that the retraining is actually carrying out minor corrections.

134 Examples Chapter 8

X
X

X

X
X

X

X
X

6-3 Config

4-5 Config

D
yn

am
ic

s

Rewards

Figure 8.10. The different configurations for training and retraining. The boxes
are ordered in ascending order. The crossed out boxes are those held out in
the initial training.

0 5000 10000 15000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

6-3: (a)

0 5000 10000 15000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

4-5: (e)

Figure 8.11. The training performances of the initial training sets for each
configuration. The legend in Figure 8.8 applies.

8.5 Discussion
Having seen some practical examples of techniques that carry out transfer,
we wish to make a few remarks. The framework from the previous chapters
describes learning to transfer algorithms as mappings from entire sets of related
tasks to sets of related models. In practice, we carry out the learning over a
finite sample of these sets.

This provides some insight into the generalisation properties of a learning to
transfer solution. An important fact about learning to transfer methods is
that they implicitly assume that the set of training tasks contains related tasks.
Having learned to transfer, we have access to a set of related models. By
generalisation in the context of transfer, we mean to evaluate how good the
solution to a new task, which is supposedly in the same set of related tasks, is.
This varies depending on the tasks that were chosen.

Imagine the extreme case where a single task is used in transfer setting. Suppose
there are two models that behave equally well, relative to the loss, and they
each lie on a leaf. Each leaf can be thought of as a class of behaviours. Thus,
if we assume that each leaf corresponds to a different behaviour, then, it could

Section 8.5 Discussion 135

0 2000 4000 6000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

6-3: (b)

0 2000 4000 6000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

6-3: (c)

0 2000 4000 6000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

6-3: (d)

0 2000 4000 6000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

4-5: (f)

0 2000 4000 6000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

4-5: (g)

0 2000 4000 6000
of Trajectories

0

200

400

600

To
ta

l R
ew

ar
d

4-5: (h)

Figure 8.12. Transfer performance of each configuration in Figure 8.10. The
legend in Figure 8.8 applies. The columns correspond to the goals left, middle
and right, respectively.

be that a related task will behave differently if a solution to it is obtained by
transfer.

Consider now the problem of balancing a pendulum of different masses using
a constrained torque (i.e. it cannot exceed a maximum). Assume that this
problem has a finite episode length, and that the reward function measures
the length of time for which the pendulum balances at the top-most position.
Given that RL is often in discrete time, it is possible to find a solution where
the pendulum spins sufficiently fast that it crosses the top-most balance point
at the sampling rate of the system. Thus, even though it is spinning quite
fast, the pendulum appears to have solved the task. If we however increase the
mass significantly, then the maximum torque of the controller might not be
able to spin the pendulum fast enough. Thus, in this case transferring from
this solution would not be effective.

This then shows that the tasks that were chosen in the initial learning to
transfer can impact generalisation, and could allow us to find the most sensible
solutions to learning problems. For example, if in the initial training set of
tasks, we had pendulums on either side of the threshold above, then finding a
behaviour (i.e. leaf) on which solutions to both exists might force the solution
to be the one that actually balances, and is viable for a wider range of tasks.
The converse of this however, is that for some tasks, their solution could be
better if less tasks were forced to be on the set of related tasks.

136 Examples Chapter 8

This page was left intentionally blank.

137

Chapter 9

Conclusion

We presented a formulation of machine learning that centered around
structure, and showed how we can define the typical components of

learning to fit within this framework. Learning, when written in this way is
about finding representations of structured systems that preserve the appropri-
ate structure. The problem of learning a single task is about preserving the
structure of a single system. The main benefit of writing learning in this way
is that we can define the problem of learning to transfer as a similar problem,
but applied over a set of systems.

Namely, transfer is defined on a set of objects; the objects are learning problems
in the learning to transfer settings. We saw that in order to have a useful way
of talking about transfer, we need to define a notion of transfer; a systematic
way of identifying what it means to transfer. We defined this as a partitioning
of our universe. Then, learning to transfer is the process of identifying the
particular partition in which our task belongs.

We identified the theory of foliations as a useful way of parameterising these
notions of transfer. When spaces of tasks and models are viewed as smooth
manifolds, this theory naturally presents itself as a good candidate. We saw
that foliations give us a way of identifying the notion of relatedness, which can
allow us to interpret learning by transfer.

In order to view space of parametric models as manifolds, we investigated
the effects of symmetries in the parameter space of a given architecture. We
saw that, even for simple neural network models, trying to analyse these can
become quite unwieldy; for this, we gave a brief introduction to GENNI, a
novel method of visualising connected regions of symmetric models, with the
intention of aiding such investigations.

Finally, we saw how a few examples of popular transfer techniques can be
written under this framework. Unfortunately, it appears that these methods
make quite simplifying assumptions that possibly avoid the rich properties of
a foliated space.

138 Conclusion Chapter 9

9.1 Future Work
This work opens up a lot of work for the future. We list a few options below;
these are in addition to any other possible future work we have mentioned
previously in the thesis.

Using full foliation. In Chapter 8 we saw that the algorithms we described
made use of local rectification, over a subset of a Euclidean space. This forgoes
the complexities of a foliation as a whole. Thus, perhaps it is possible to devise
loss functions and learning algorithms that can space the entire manifold of
the model space.

In addition to this, perhaps we can take the learning another step higher. In
this case, we want to somehow parameterise the foliation it self, and ask which
notion of transfer is best suited for the current problem. In a setting like this,
we won’t assume that all tasks that we have are related, but asks the algorithm
to produce the optimal (according to some loss function) related sets to which
they belong to.

Evaluating transferrability. Once we have learned the set of related models
on which a set of related tasks lie, an assumption that is made when carrying
out learning by transfer is that the new task belongs to the same set of related
tasks. A natural question that arises is the accuracy of this assumption.

The foliated view of transfer could provide principled methods for measuring
this. For example, if loss functions and learning algorithms are well-behaved,
then could we use the gradient of the loss from any learned solution, with data
from the new learning problem as a measure? Does the assumption that if
the optimal set of related models for the new model is close to the learned set,
imply that the flow try to stay close to it? If so, measuring the size of the
gradient in the transverse direction to the leaf might be a useful measure of
transferability.

Alternatively, we could also investigate properties of loss functions that in
addition to allowing transfer, provide easy measures of transferability; we
expect that equivariant loss functions could play a role here.

Composition of models. The action of groups can be an interesting way to
consider compositions. That is, given two groups G1 and G2, with actions ρ1 and
ρ2, we can consider a composed action ρ1 ◦ρ2 on the semidirect1 product group
space G1 ⋊ G2. We know that foliations have a natural correspondence with
groups and actions over manifolds. Could this be used to learn transferrable
models that can have a useful, interpretable notion of composability?

A potential application of this, and thus interpretation can be seen in systems
biology. A key goal in this field is to identify how complex behaviour can be

1Since a semidirect product [58] is more general than a direct product space, it could be
used in more interesting cases.

Section 9.1 Future Work 139

generated by the composition of simpler behaviours [45, 44]. The question
is, under some restrictions of potential behaviours, which simpler behaviours
can be composed to create variations of the same complex behaviour. We
previously said that each leaf can be thought of as a mode of behaviour. Thus,
moving in the space of leaves changes the behaviour, and moving along a leaf
is a variation of that behaviour. Thus, it could be possible that a foliated
structure could be used to carry out the learning of this decomposition (under
an assumed method of composability).

Extention to Category Theory. In Section 5.3, we alluded that there is a
correspondence between category theory and the theory that we had developed
here. It is possible that much of the theory here can be written much more
simply in the language of categories. This, and the implications of such a
rewriting leaves for an exciting piece of future work.

140 Conclusion Chapter 9

This page was left intentionally blank.

141

Bibliography

[1] Adams, J. A. Historical review and appraisal of research on the learning,
retention, and transfer of human motor skills. Psychological bulletin 101,
1 (1987), 41.

[2] Al-Mualla, M., Canagarajah, C. N., and Bull, D. R. Video
coding for mobile communications: efficiency, complexity and resilience.
Elsevier, 2002.

[3] Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Gir-
gin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin, O.,
Michalski, M., et al. What matters in on-policy reinforcement learn-
ing? a large-scale empirical study. arXiv preprint arXiv:2006.05990
(2020).

[4] Arnol’d, V. I. Mathematical Methods of Classical Mechanics, vol. 60.
Springer Science & Business Media, 2013.

[5] Barrett, D. G., and Dherin, B. Implicit gradient regularization.
arXiv preprint arXiv:2009.11162 (2020).

[6] Baxter, J. Learning internal representations. In Proceedings of the
Conference on Computational Learning Theory (1995), pp. 311–320.

[7] Baxter, J. A model of inductive bias learning. Journal of Artificial
Intelligence Research 12 (2000), 149–198.

[8] Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. Anal-
ysis of representations for domain adaptation. In Advances in Neural
Information Processing Systems (2007), pp. 137–144.

[9] Ben-David, S., and Borbely, R. S. A notion of task relatedness
yielding provable multiple-task learning guarantees. Machine Learning
73, 3 (2008), 273–287.

[10] Ben-David, S., and Schuller, R. Exploiting task relatedness for
multiple task learning. In Learning Theory and Kernel Machines. Springer,
2003, pp. 567–580.

[11] Bishop, C. M. Pattern Recognition and Machine Learning. Springer,
2006.

142 Bibliography Chapter 9

[12] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
M. K. Occam’s razor. Information processing letters 24, 6 (1987),
377–380.

[13] Camacho, C., and Neto, A. L. Geometric Theory of Foliations.
Springer Science & Business Media, 2013.

[14] Caruana, R. Multitask learning. Machine Learning 28, 1 (1997), 41–75.

[15] Cederquist, J., and Negri, S. A constructive proof of the heine-borel
covering theorem for formal reals. In International Workshop on Types
for Proofs and Programs (1995), pp. 62–75.

[16] Chang, C. C., and Keisler, H. J. Model theory. Elsevier, 1990.

[17] Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina, R.
Entropy-sgd: Biasing gradient descent into wide valleys. Journal of
Statistical Mechanics: Theory and Experiment 2019, 12 (2019), 124018.

[18] Cohen, T., Geiger, M., and Weiler, M. A general theory of equiv-
ariant cnns on homogeneous spaces. arXiv preprint arXiv:1811.02017
(2018).

[19] Cohen, T., Weiler, M., Kicanaoglu, B., and Welling, M. Gauge
equivariant convolutional networks and the icosahedral CNN. In Pro-
ceedings of the International Conference on Machine Learning (2019),
pp. 1321–1330.

[20] Cohen, T., and Welling, M. Group equivariant convolutional net-
works. In International conference on machine learning (2016), PMLR,
pp. 2990–2999.

[21] Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. Spherical
CNNs. arXiv preprint arXiv:1801.10130 (2018).

[22] Deisenroth, M., and Rasmussen, C. E. Pilco: A model-based and
data-efficient approach to policy search. In Proceedings of the 28th Inter-
national Conference on machine learning (ICML-11) (2011), Citeseer,
pp. 465–472.

[23] Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X.,
Leonardis, A., Slabaugh, G., and Tuytelaars, T. A contin-
ual learning survey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021).

[24] Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp minima
can generalize for deep nets. In Proceedings of the 34th International
Conference on Machine Learning (2017), vol. 70, PMLR, pp. 1019–1028.

[25] Domingos, P. The role of occam’s razor in knowledge discovery. Data
mining and knowledge discovery 3, 4 (1999), 409–425.

Section 143

[26] Ellis, H. C. The Transfer of Learning. Macmillan, 1965.

[27] Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. Journal of Machine Learning Research 20, 55 (2019),
1–21.

[28] Esfeld, M. Ontic structural realism and the interpretation of quantum
mechanics. European Journal for Philosophy of Science 3, 1 (2013),
19–32.

[29] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning
for fast adaptation of deep networks. In Proceedings of the International
Conference on Machine Learning (2017).

[30] French, S., and Ladyman, J. In defence of ontic structural realism.
In Scientific structuralism. Springer, 2010, pp. 25–42.

[31] Giraud-Carrier, C., and Provost, F. Toward a justification of meta-
learning: Is the no free lunch theorem a show-stopper. In Proceedings of
the ICML-2005 Workshop on Meta-learning (2005), pp. 12–19.

[32] Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths,
T. Recasting gradient-based meta-learning as hierarchical Bayes. In
Proceedings of the International Conference on Representation Learning
(2018).

[33] Grunwald, P. A tutorial introduction to the minimum description
length principle. arXiv preprint math/0406077 (2004).

[34] Haefliger, A. Homotopy and integrability. In Manifolds—Amsterdam
1970. Springer, 1971, pp. 133–163.

[35] Hall, B. Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction, vol. 222. Springer, 2015.

[36] Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and
Riedmiller, M. Learning an embedding space for transferable robot
skills. In Proceedings of the International Conference on Learning Repre-
sentations (2018).

[37] Hawkins, T. The mathematics of frobenius in context. Sources and
Studies in the History of Mathematics and Physical Sciences. Springer
(2013).

[38] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2016), pp. 770–778.

[39] Hermann, R. On the accessibility problem in control theory. In Inter-
national Symposium on Nonlinear Differential Equations and Nonlinear
Mechanics (1963), Elsevier, pp. 325–332.

144 Bibliography Chapter 9

[40] Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt,
S., and van Hasselt, H. Multi-task deep reinforcement learning with
popart. In Proceedings of the AAAI Conference on Artificial Intelligence
(2019), vol. 33, pp. 3796–3803.

[41] Hinton, G. E., and Van Camp, D. Keeping the neural networks
simple by minimizing the description length of the weights. In Proceedings
of the sixth annual conference on Computational learning theory (1993),
pp. 5–13.

[42] Hochreiter, S., and Schmidhuber, J. Flat minima. Neural compu-
tation 9, 1 (1997), 1–42.

[43] Hospedales, T., Antoniou, A., Micaelli, P., and Storkey,
A. Meta-learning in neural networks: a survey. arXiv preprint
arXiv:2004.05439 (2020).

[44] Jaeger, J., and Monk, N. Dynamical modularity of the genotype-
phenotype map. In Evolutionary systems biology. Springer, 2021, pp. 245–
280.

[45] Jaeger, J., and Monk, N. Dynamical modules in metabolism, cell
and developmental biology. Interface focus 11, 3 (2021), 20210011.

[46] Jones, D. M. The amsfonts package. Versão 3 (2013), 14.

[47] Jurdjevic, V. Geometric Control Theory. Cambridge University Press,
1997.

[48] Kaddour, J., Sæmundsson, S., and Deisenroth, M. P. Probabilistic
active meta-learning. In Advances in Neural Information Processing
Systems (2020).

[49] Kingma, D. P., and Welling, M. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[50] Kingman, J., and Taylor, S. Introduction to measure theory and
probability. Cambridge, 1966.

[51] Kolmogorov, A. N., and Fomin, S. V. Elements of the theory of
functions and functional analysis. Courier Corporation, 1957.

[52] Kuhn, T. S. The Structure of Scientific Revolutions. University of
Chicago press, 2012.

[53] Lavau, S. A short guide through integration theorems of generalized
distributions. Differential Geometry and its Applications 61 (2018),
42–58.

[54] Lawson Jr, H. B. Codimension-one foliations of spheres. Annals of
Mathematics (1971), 494–503.

Section 145

[55] Lawson Jr, H. B. Foliations. Bulletin of the American Mathematical
Society 80, 3 (1974), 369–418.

[56] Leberman, S., and McDonald, L. The transfer of learning: Partici-
pants’ perspectives of adult education and training. CRC Press, 2016.

[57] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropagation applied
to handwritten zip code recognition. Neural computation 1, 4 (1989),
541–551.

[58] Lee, J. M. Introduction to Smooth Manifolds. Springer, 2001.

[59] Lengyel, D., Petangoda, J., Falk, I., Highnam, K., Lazarou, M.,
Kolbeinsson, A., Deisenroth, M. P., and Jennings, N. R. Genni:
Visualising the geometry of equivalences for neural network identifiability.
arXiv preprint arXiv:2011.07407 (2020).

[60] Levine, S. Reinforcement learning and control as probabilistic inference:
Tutorial and review. arXiv preprint arXiv:1805.00909 (2018).

[61] Lisle, I. G., and Reid, G. J. Geometry and structure of lie pseu-
dogroups from infinitesimal defining systems. Journal of Symbolic Com-
putation 26, 3 (1998), 355–379.

[62] Mac Lane, S. Categories for the working mathematician, vol. 5. Springer
Science & Business Media, 2013.

[63] Marr, D. Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. Henry Holt and
Co., Inc., 1982.

[64] McGehee, R. The stable manifold theorem via an isolating block. In
Symposium on Ordinary Differential Equations (1973), Springer, pp. 135–
144.

[65] McInnes, L., Healy, J., and Melville, J. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[66] Mendelson, B. Introduction to Topology. Courier Corporation, 1990.

[67] Mitchell, T. Machine learning.

[68] Mitchell, T. M. The Need for Biases in Learning Generalizations.
Department of Computer Science, Laboratory for Computer Science
Research, 1980.

[69] Moerdijk, I., and Mrcun, J. Introduction to foliations and Lie
groupoids, vol. 91. Cambridge university press, 2003.

[70] Nakahara, M. Geometry, Topology and Physics. CRC Press, 2003.

146 Bibliography Chapter 9

[71] Ng, A. Y., Harada, D., and Russell, S. Policy invariance under
reward transformations: Theory and application to reward shaping. In
Icml (1999), vol. 99, pp. 278–287.

[72] Olver, P. J. Equivalence, Invariants and Symmetry. Cambridge
University Press, 1995.

[73] Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. Domain
adaptation via transfer component analysis. IEEE Transactions on
Neural Networks 22, 2 (2010), 199–210.

[74] Pan, S. J., and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345–
1359.

[75] Petangoda, J., Deisenroth, M. P., and Monk, N. A. Learning to
transfer: A foliated theory. arXiv preprint arXiv:2107.10763 (2021).

[76] Petangoda, J. C., Pascual-Diaz, S., Adam, V., Vrancx, P.,
and Grau-Moya, J. Disentangled skill embeddings for reinforcement
learning. arXiv preprint arXiv:1906.09223 (2019).

[77] Rasmussen, C., and Ghahramani, Z. Occam’s razor. Advances in
neural information processing systems 13 (2000).

[78] Reddy, D., and Jana, P. K. Initialization for k-means clustering using
voronoi diagram. Procedia Technology 4 (2012), 395–400.

[79] Reeb, G. Sur certaines propriétés topologiques des variétés feuilletées.
Act. Sc. et Ind. (1952).

[80] Rosenberg, H., and Roussarie, R. Reeb foliations. Annals of
Mathematics (1970), 1–24.

[81] Royer, J. M. Theories of learning transfer. Center for the Study of
Reading Technical Report; no. 079 (1978).

[82] Ruder, S. An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098 (2017).

[83] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning
internal representations by error propagation. Tech. rep., California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[84] Russell, S. J. Preliminary steps toward the automation of induction.
In AAAI (1986), pp. 477–484.

[85] Sacksteder, R. On the existence of exceptional leaves in foliations
of co-dimension one. In Annales de l’institut Fourier (1964), vol. 14,
pp. 221–225.

Section 147

[86] Sæmundsson, S., Hofmann, K., and Deisenroth, M. P. Meta rein-
forcement learning with latent variable Gaussian processes. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence (2018).

[87] Saemundsson, S., Terenin, A., Hofmann, K., and Deisenroth, M.
Variational integrator networks for physically structured embeddings. In
International Conference on Artificial Intelligence and Statistics (2020),
PMLR, pp. 3078–3087.

[88] Schaffer, C. A conservation law for generalization performance. In
Machine Learning Proceedings 1994. Elsevier, 1994, pp. 259–265.

[89] Schmidhuber, J. On learning how to learn learning strategies. Tech.
rep., TODO: FINDOUT, 1995.

[90] Schmidhuber, J., Zhao, J., and Wiering, M. A. Simple principles
of metalearning. Technical Report IDSIA 69 (1996), 1–23.

[91] Schunk, D. H. Learning Theories, an Educational Perspective. Pearson,
2012.

[92] Shalev-Shwartz, S., and Ben-David, S. Understanding Machine
Learning: From Theory to Algorithms. Cambridge University Press, 2014.

[93] Shipley, J. O., and Dolan, S. R. Binary black hole shadows, chaotic
scattering and the cantor set. Classical and Quantum Gravity 33, 17
(2016), 175001.

[94] Silver, D. L., and Mercer, R. E. The parallel transfer of task
knowledge using dynamic learning rates based on a measure of relatedness.
In Learning to learn. Springer, 1996, pp. 213–233.

[95] Skinner, B. The science of learning and the art of teaching. Harvard
Education Revue, vol. 24 (1954).

[96] Smith, S. L., Dherin, B., Barrett, D. G., and De, S. On the
origin of implicit regularization in stochastic gradient descent. arXiv
preprint arXiv:2101.12176 (2021).

[97] Snell, J., Swersky, K., and Zemel, R. Prototypical networks for
few-shot learning. In Advances in Neural Information Processing Systems
(2017), pp. 4077–4087.

[98] Stefan, P. Accessible sets, orbits, and foliations with singularities.
Proceedings of the London Mathematical Society 3, 4 (1974), 699–713.

[99] Steiner, G. Transfer of learning, cognitive psychology of. In Interna-
tional Encyclopedia of the Social and Behavioral Sciences, N. J. Smelser
and P. B. Baltes, Eds. Pergamon, Oxford, 2001, pp. 15845–15851.

[100] Strogatz, S. H. Nonlinear dynamics and chaos: with applications to
physics, biology, chemistry, and engineering. CRC press, 2018.

148 Bibliography Chapter 9

[101] Subedi, B. S. Emerging trends of research on transfer of learning.
International education journal 5, 4 (2004), 591–599.

[102] Sussmann, H. J. Orbits of families of vector fields and integrability of
distributions. Transactions of the American Mathematical Society 180
(1973), 171–188.

[103] Sussmann, H. J. Uniqueness of the weights for minimal feedforward nets
with a given input-output map. Neural networks 5, 4 (1992), 589–593.

[104] Sutton, R. S., and Barto, A. G. Reinforcement Learning: An
Introduction. MIT press, 2018.

[105] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing systems
(2000), pp. 1057–1063.

[106] Tamura, I. Topology of Foliations: An Introduction: An Introduction,
vol. 97. American Mathematical Soc., 1992.

[107] Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. Distral: Robust multi-
task reinforcement learning. Advances in neural information processing
systems 30 (2017).

[108] Thorndike, E. L. Educational psychology, Vol 2: The psychology of
learning. Teachers College, 1913.

[109] Thrun, S., and Mitchell, T. M. Learning one more thing. Tech.
rep., Carenegie Mellon University, 1994.

[110] Thrun, S., and Mitchell, T. M. Lifelong robot learning. Robotics
and Autonomous Systems 15, 1-2 (1995), 25–46.

[111] Trench, W. F. Elementary differential equations with boundary value
problems. 2013.

[112] Valentine, J. W. On the origin of phyla. University of Chicago Press,
2004.

[113] van Hasselt, H. P., Guez, A., Hessel, M., Mnih, V., and Silver,
D. Learning values across many orders of magnitude. Advances in Neural
Information Processing Systems 29 (2016).

[114] Vapnik, V. N., and Chervonenkis, A. Y. On the uniform convergence
of relative frequencies of events to their probabilities. In Measures of
Complexity. Springer, 2015, pp. 11–30.

[115] Vilalta, R., and Drissi, Y. A perspective view and survey of meta-
learning. Artificial Intelligence Review 18, 2 (2002), 77–95.

Section 149

[116] Vlačić, V., and Bölcskei, H. Neural network identifiability for a
family of sigmoidal nonlinearities. Constructive Approximation (2021),
1–52.

[117] Vondrick, C., Pirsiavash, H., and Torralba, A. Anticipating
visual representations from unlabeled video. In Proceedings of the IEEE
conference on computer vision and pattern recognition (2016), pp. 98–106.

[118] Wang, M., and Deng, W. Deep visual domain adaptation: A survey.
Neurocomputing 312 (2018), 135–153.

[119] Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. Generalizing from
a few examples: A survey on few-shot learning. ACM Computing Surveys
53, 3 (2020), 1–34.

[120] Watkins, C. J., and Dayan, P. Q-learning. Machine learning 8, 3-4
(1992), 279–292.

[121] Webb, G. I. Further experimental evidence against the utility of occam’s
razor. Journal of Artificial Intelligence Research 4 (1996), 397–417.

[122] Weyl, H. Symmetry, vol. 104. Princeton University Press, 2015.

[123] Williams, R. J. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992),
229–256.

[124] Wolpert, D. H. The lack of a priori distinctions between learning
algorithms. Neural computation 8, 7 (1996), 1341–1390.

[125] Wolpert, D. H., and Mcreader, W. G. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Computation 1, 1
(1997), 67–82.

[126] Worrall, J. Structural realism: The best of both worlds? Dialectica
43, 1-2 (1989), 99–124.

150 Bibliography Chapter 9

This page was left intentionally blank.

151

Appendix

This page was left intentionally blank.

153

Appendix A

Mathematical Preliminaries

We provide some background details of mathematical principles that were
used in the thesis.

A.1 Topology
A topology is a simple structure one can place on a set M.

Definition A.1.1 (Topology). Definition of a
Topology

Given a set X, a topology OX on X is a set
of subsets of X that satisfy the following conditions:

a) X ∈ OX and ∅ ∈ OX ,

b) for Ui ∈ OX ,
⋃

i∈I Ui ∈ OX (closed under arbitrary unions),

c) U1, U2, ..., Un ∈ OX =⇒
⋂n

i=1 Ui ∈ OX (closed under finite intersec-
tions).

Simply put, a topology OM is a set of subsets of a set which is closed under
(finite) intersections and (arbitrary) unions, and also contains the null set ∅,
and the set M itself. An element of a topology U ∈ OM , which is a subset of
M is called an open set, the difference of which with M is called a closed set.
Despite these names, it is incorrect to think of an open set as an open interval;
particularly, some sets can be both open and closed (for example, the full set
M). The tuple (M,OM) is called a topological space.

Closed sets can have other characterisations. One such is that is a set which
contains all its limit points; that is, the limits of all convergent sequences in a
closed set is contained in the closed set.

An intuitively familiar example of a topology is the called the standard topology
OS

Rd on Rd. To define the standard topology, one defines its elements, the
open sets implicitly as follows. An open set U ∈ OS

Rd iff ∀p ∈ U, ∃r ∈ [0,∞] :
Br(p) ⊆ U , where Br(p) :=

{
x

∣∣ √∑d
i=0(xi − pi)2}

are open balls centred at p.
This topology in R2 is depicted in Figure A.1.

An important idea a topology affords us is a neighbourhood of a point. Different

154 Mathematical Preliminaries Appendix A

U
Br

p

ℝ2

Figure A.1. An open set in the standard topology on R2. Note that the dashed
lines imply that the boundary is not included. Furthermore, the open set U is
populated with other open balls at all other points p ∈ U .

authors define this slightly differently, but these differences are inconsequential
to our discourse. [58] defines a neighbourhood of a point p ∈ M as an open
set Up ∈ OM that contains p; on the other hand, [66] define Ap ⊆ M to be
a neighbourhood of p if it completely contains an open set Up ∈ OM that
contains p. Presently, we will stick to the former definition by [58], since it is
simpler to consider.

At this point, it is worth noting the relationship between topological spaces
and metric spaces. Loosely, a metric space is a set equipped with a metric,
which is a numerical measure of distance between points; this is defined more
formally in Definition A.1.2.

Definition A.1.2 (Metric).Definition of a Metric Given a set X, a metric is a map ρ : X×X → R+

that satisfies:

a) ρ(x, y) = 0 ⇐⇒ x = y,

b) ρ(x, y) = ρ(y, x) (symmetry),

c) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (triangle inequality),

for x, y, z ∈ X.

Every metric space defines a topological space through the metric topology;
this is a topology similar to the standard topology, where the open balls are
defined w.r.t. the metric on the metric space. In fact, the standard topology
is the metric topology on Rd defined w.r.t. the Euclidean metric. There are,
however topological spaces which do not have a corresponding metric; those
that do, are called metrizable [66]. In this way, a topological space is more
general. That is, as in the case of the circle example above, we are allowed
to consider closeness in terms of a metric, but it is not the only allowed way.
Choosing a metric fixes the shape of a space; for example, topologically, a
geometric circle and a geometric ellipse are topologically equivalent to the

Section A.2 Measure Theory and Probability 155

circle space S1.

Now, we can imagine transforming a circle into an ellipse by simply stretching
or squashing actions (imagine a spherical balloon being squashed between
2 poles). Importantly, we do not tear (or create holes) the space. Such a
transformation, that maps between 2 topological spaces is called a continuous
map. More specifically, a continuous map is the topology preserving map;
a map f : X → Y between 2 topological spaces (X,OX) and (Y,OY) is
continuous if the pre-image of open sets in Y is open in X. If such a map is
invertible, f is said to be a homeomorphism, which is the special name given
to topological isomorphisms. Thus, the map between a circle and an ellipse is
a homeomorphism.

We note that in this way of defining a continuous map, the only necessary
information about X and Y are their topologies. A typical way of defining
a continuous map is in terms of the ϵ− δ notation. Such a definition is only
possible on a metric space, and we state that the definition given above is
therefore more general. Of course, for a metrizable topological space, the ϵ− δ
definition follows once a suitable metric is found.

A topology allows us to then define a host of useful and important other
notions that are preserved under continuous mappings. One such is the notion
of compactness. Intuitively, one can think of a compact subset as a subset that
is closed and bounded; for Rd, the Heine-Borel Theorem [15] says that this is
exactly true. A compact set remains compact under a continuous map. Another
such property is that of (path)-connectedness. A subset A is (path)-connected
if one can draw a continuous line γpq : [0, 1] → A between any two points
p, q ∈ A, where γ(0) = p and γ(1) = q. Generally, path-connectedness and
connectedness are distinct properties, but this distinction is not necessary in
the present work, and we mean path-connectedness if we state that a set is
connected.

A.2 Measure Theory and Probability
It is useful in measure theory to define an extended real line,

Definition A.2.1 (Extended Real Line). Definition of a
Extended Real Line

An extended real line, denoted by R∗

is a compactification of the real number field, by adds −∞ and ∞ to it. In this
field, the following rules for addition and multiplication are satisfied for x ∈ R:

a) −∞ < x <∞

b) x±∞ =∞, x±−∞ = −∞,

c) if x > 0, x×±∞ = ±∞,

d) if x = 0, x×±∞ = 0,

e) if x < 0, x×±∞ = ∓∞, and

156 Mathematical Preliminaries Appendix A

f) ∞×∞ =∞, −∞×−∞ =∞ and ∞×−∞ = −∞.

It is assumed that R is endowed with the standard topology. The non-negative
extended real line, as the name suggests, places the addition constraint that
all elements of it must be non-negative. That is,

Definition A.2.2 (Non-negative Extended Real Line).Definition of a
Non-negative
Extended Real Line

The non-negative
extended real line, denoted as R+ is the set,

R+ = {x|x ∈ R∗, x ≥ 0}.

The elementary structure that we place on a set in measure theory [50, 51] is a
σ−algebra, which is defined as follows;

Definition A.2.3 (σ−algebra).Definition of a
σ−algebra

Given a set X, a σ-algebra ΣX on X is a set
of subsets of X that satisfy:

a) X ∈ ΣX ,

b) if U ∈ ΣX , then U c ∈ ΣX ,

c) if {Un}n∈I is a sequence of elements in ΣX , then
⋃

n∈I Un ∈ ΣX .

Note that Condition (b), together with Condition (1) implies that ∅ ∈ ΣX .

Definition A.2.4 (Measurable Space).Definition of a
Measurable Space

A set X, together with a σ-algebra
ΣX is called a measurable space.

A special kind of σ-algebra is the Borel σ-algebra;

Definition A.2.5 (Borel σ-algebra).Definition of a Borel
σ-algebra

Given a topological space (X,OX), a
Borel σ-algebra on X, denoted by BX is the smallest σ-algebra that contains
the open sets of OX .

One can define maps between measurable spaces that respect the measure-
theoretic structures in the following way;

Definition A.2.6 (Measurable Map).Definition of a
Measurable Map

Given measurable spaces (X,ΣX), and
(Y,ΣY), a measurable map is a map,

f : X → Y,

that for U ∈ ΣY , the preimage w.r.t f satisfies,

f−1[U] ∈ ΣX

A measurable space can then be endowed with the key structure of measure
theory, a measure;

Definition A.2.7 (Measure).Definition of a
Measure

A measure µ on a measurable space (X,ΣX) is
a map,

µ : ΣX → R+

that satisfies,

Section A.2 Measure Theory and Probability 157

a) µ(∅) = 0,

b) for {Un}n∈I , where Un ∈ ΣX and Ui ∩ Uj = ∅ for i, j ∈ I,

µ

(N⋃
n=1

Un

)
=

N∑
n=1

µ(Un).

A measurable space, together with a measure makes a measure space;

Definition A.2.8 (Measure Space). Definition of a
Measure Space

A tuple (X,ΣX , µ) of a set, a σ-algebra
on this set, and a measure is called a measure space.

If a measurable function is defined between a measure space and a measurable
space, then it induces a measure on its codomain as,

Definition A.2.9 (Induced Measure). Definition of a
Induced Measure

Given a measure space (X,ΣX , µX),
a measurable space (Y,ΣY), and a measurable map f : X → Y , a measure is
induced on (Y,ΣY) by f , where,

µY : ΣY → R+

U 7→ µY (U) = µX(f−1[U]).

We can prove that µY is a valid measure;

Theorem A.2.1. Induced measure is a
measure

µY as defined in Definition A.2.9 is a measure.

Proof. We need to show that µY satisfies the conditions of a measure. This
can be shown as follows:

a) since f−1[∅] = ∅, µY (∅) = µX(f−1[∅]) = µX(∅) = 0,

b) since for any set of subsets {Un}n∈I ,

f−1
(⋃

n∈I
Un

)
=

⋃
n∈I

f−1(Un),

we can say that for {Un}n∈I , where Un ∈ ΣY and Ui∩Uj = ∅ for i, j ∈ I,

µY

(⋃
n∈I

Un

)
= µX

(
f−1

(⋃
n∈I

Un

))
= µX

(⋃
n∈I

f−1(Un)
)

=
∑
n∈I

µX

(
f−1(Un)

)
=

∑
n∈I

µY (Un).

■

A probability space is a special kind of measure space, where the measure
satisfies the conditions of a probability measure;

158 Mathematical Preliminaries Appendix A

Definition A.2.10 (Probability Measure).Definition of a
Probability Measure

Given a measurable space (X,ΣX),
a probability measure ρ is a map,

ρ : ΣX → [0, 1],

that satisfies,

a) for ρ(∅) = 0,

b) for {Un}Nn=1, where Un ∈ ΣX and Ui ∩ Uj = ∅ for 1 ≤ i, j ≤ N ,

ρ

(N⋃
n=1

Un

)
=

N∑
n=1

ρ(Un),

and,

c) ρ(X) = 1.

Thus,

Definition A.2.11 (Probability Space).Definition of a
Probability Space

A probability space is a tuple (X,ΣX , ρ)
of a set, a σ-algebra on this set, and a probability measure.

A random variable is a measurable map between a probability space and the
extended real line, endowed with a Borel σ-algebra;

Definition A.2.12 (Random Variable).Definition of a
Random Variable

Given a probability space (X,ΣX , ρ)
and the measurable space (R∗,BR∗), a random variable x is a measurable map,

x : X → R∗.

A.3 Manifolds
A relatively simple, yet powerful object that we can start with is a topological
manifold:

Definition A.3.1 (Topological manifold).Definition of a
Topological manifold

A tuple (M,OM,AM), is called a
d-dimensional topological manifold if:

a) M is a set,

b) OM is a topology on M, where (U ∈ OM) ⊆ M is called an open set.
The topology must be Hausdorff and paracompact.

c) AM is a collection of charts, where a chart (U, ϕ) ∈ AM consists of an
open set and a homeomorphism ϕ : U → (URd ⊆ Rd).

Here, Rd is the usual real space endowed with OS
Rd, the standard topology.

A topological manifold is created by endowing a topological space with a set
of charts, called an atlas. A chart, from Definition A.3.1 consists of a tuple
of an open set U ∈ OM and a map ϕ that is a homeomorphism between U
and a subset URd of Rd. This then is a generalisation of what we think of

Section A.3 Manifolds 159

as the topological space Rd; that is such a d dimensional manifold is locally
homeomorphic to Rd. The key aspect here is that the set M can be given any
topology OM on it, but we can still locally relate it to a space we are familiar
with (the real space); see Figure A.2. Each map ϕ that does this is called the
coordinate map. An atlas is a collection of such charts, such that the domains
of each of the chart maps is a cover of M .

U

V

ɸ

!
ɸ ⚪ !-1

M

ɸ(U)

!(V)

Figure A.2. A topological manifold M with examples of its coordinate charts.
We see here that despite being a complicated topological entity (See the hole
in the middle), locally, it is equivalent to R2. Further, note that the chart
transition map ϕ ◦ ψ−1 : VR2 → UR2 exists because a homeomorphism is
invertible, and is continuous since the composition of continuous maps remains
so.

We note here that because open sets of the manifold are homeomorphic to Rd,
which is endowed with the standard topology, our manifold is locally compact.
This means that every point on the manifold has a neighbourhood that is
contained in a compact subset of X; intuitively, compactness gives us a notion
of being closed (contains limit points) and bounded [15]. In addition to this,
our manifolds are Hausdorff [58]. This means that if we take any 2 points
on a manifold, there exists at least one neighbourhood of each point such
that these subsets are non-intersecting. These properties give our manifolds
nice properties that make them easy to work with. As an example, a trivial
topology that can be given to a set X is {X,∅}. It is possible to show that
every map onto X is continuous, and as such this topology doesn’t provide
us with any useful structure; the Hausdorff property ensures that there are
enough open sets to reason about interesting things.

In Figure A.2, there is a map that is defined to take elements in the intersection
of two open sets from one chart to another. More precisely, given U, V ∈ OM
and charts on these sets (U, ϕ), (V, ψ) ∈ AM, where ϕ : U → (URd ⊂ Rd) and
ψ : V → (VRd ⊂ Rd), and if U ∩ V ≠ ∅, then ϕ ◦ ψ−1 : ψ(U ∩ V)→ ϕ(U ∩ V).
Such a map is called a chart transition map. These maps are important in

160 Mathematical Preliminaries Appendix A

defining differential properties on a manifold.

Definition A.3.2 (Ck - Atlas).Definition of a Ck -
Atlas

An atlas AM of a topological manifold
M is called a Ck-atlas if all chart transition maps are k times continuously
differentiable.

In this way, if our AM atlas satisfies these conditions, we call M a Ck-
differentiable manifold. A smooth manifold then is a C∞-manifold; that is, it
is infinitely differentiable. Such properties are defined to enable us to carry
out calculus on manifolds in an invariant way; topologies don’t provide enough
restrictions because it is possible to construct maps that are homeomorphisms,
but don’t preserve differentiability.

Furthermore, requiring that smoothness is preserved at the intersection of open
sets also exposes another key aspect of the philosophy of manifolds, differential
or otherwise. A manifold attempts to describe its properties in a coordinate
independent way. That is, the manifold exists, with its properties, without the
need for chart maps; the charts are our ways of interacting with the manifold.
However, if the chart is valid, and respects the conditions we put on it, then our
choice of a chart shouldn’t change the properties of the underlying manifold.

This is because if there are two charts in our atlas, (U, ϕ), (U,ψ) ∈ AM, which
are based on the same open set U ∈ OM, then doing either chart transition
ϕ ◦ ψ−1 or ψ ◦ ϕ−1 should not alter any properties we see on either coordinate.
Thus, the condition in Definition A.3.2 ensures that smoothness properties are
preserved between coordinates, and allows us to measure whether they can be
preserved through maps between differential manifolds. A map f on M is said
to be smooth, if f ◦ ϕ−1 is smooth, for any (U, ϕ) ∈ AM. A map that does
preserve smoothness, and is invertible is called a diffeomorphism. In this way,
the chart transition maps are therefore perhaps the most obvious examples of
diffeomorphisms.

As a slight tangent, this philosophy contributes to the beauty of differential
geometry. It allows us to define properties intrinsic to a space without worrying
about how we choose to represent them; these properties are then independent
of the coordinate system we choose. This is of course a very desirable attribute,
since we don’t want to worry about whether our theories are the way they are
because of a particular choice in coordinates that we made.

A.4 Groups and Group Actions

Definition A.4.1 (Group).Definition of a Group A set G with an operation • : G × G → G is called
a group (G, •) if:

a) • is associative,

b) there exists e ∈ G such that e • g = g for any g ∈ G, and,

c) ∀g ∈ G there exists g−1 ∈ G such that g • g−1 = e and g−1 • g = e.

Section A.4 Groups and Group Actions 161

A group is said to be commutative or Abelian if g • h = h • g.

The key way in which we will be using a group is through its action on another
set.

Definition A.4.2 (Group action (left)). Definition of a Group
action (left)

The (left) action of a group (G, •) on
a set X is a map ρ : G ×X → X that satisfies:

a) ρ(h, ρ(g, x)) = ρ(h ◦ g, x),

b) ρ(e, x) = x,

for g, h ∈ G, e ∈ G is the neutral element in G, and x ∈ X.

A right action reverses the order of the input; we brevity, we will only consider
left group actions, and therefore won’t qualify which we use. A group action
gives us a way to traverse a set in terms of a set of transformations. That is, we
can think of a group as a set of transformations, and the action of an element
of a group is applying a particular transformation an element of another group.
An example of a group is SO(3), which is group of all spherical rotations; an
element of SO(3) can act on an element of R3 by rotating it, in the intuitive
sense.

Groups play an important role in the idea of symmetries and invariances [122].
A particular reason for that are the two conditions that a group action must
satisfy. These conditions ensure a sort of consistency in the behaviour of the
action. Consider the following scenario. We have three points x, y, z ∈ X.
Suppose y = gxy(x), z = gyx(y) and the z = gxz(x). The first condition ensures
that gxz = gxy •gyz, that we can blindly choose from G whether to move from x
to z directly, or to do so through an intermediate point y. The second condition
ensures this consistency holds for the neutral element of the group too.

Definition A.4.3 (Orbit). Definition of a OrbitGiven a group G and its action ρ on a set X, the
orbit of G centered at a point x ∈ X, which is denoted by OG(x), is a set defined
as:

OG(x) =
{
y

∣∣ y = ρ(g, x) ∀g ∈ G
}
.

Since G includes the neutral element, x ∈ OG(x). The consistency requirements
of a group action, together with the requirements of a group imply that an
orbit forms a well defined equivalence class. That is, if x, y ∈ OG(x), then
OG(x) = OG(y). In other words, there is an equivalence relation, where x ∼ y
if ∃g ∈ G such that x = g(y)G , which is of course used in the definition of an
orbit. With an equivalence relation comes a quotient space X/ ∼; this is the
space of equivalence classes. The quotient space defined by orbits of a G is
denoted by X/G and is called the orbit space.

A group action is called free if its isotropy groups are trivial, and only contain
the neural element. This implies that for a free group action, if x, y ∈ OG(x),
then OG(x) = OG(y). This means that the orbits of a free action are well
defined equivalence classes.

162 Mathematical Preliminaries Appendix A

An important class of groups that we consider are Lie Groups [70, 58, 35]. Lie
groups are simply groups that are also smooth manifolds.

We define a proper action [58, Chapter 21] as,

Definition A.4.4 (Proper action).Definition of a
Proper action

Given a Lie group G and a manifold M,
with a (left) action ρ, the action is called a proper action if,

(g, p) 7→ (ρ(g, p), p)

is proper.

Note that this is different, and weaker to requiring that the action itself is a
proper map.

163

Appendix B

Miscellaneous Definitions and
Proofs

B.1 Intersection of Subsystems

Definition B.1.1 (Intersection of subsystems). Definition of a
Intersection of

subsystems

Suppose we are given subsys-
tems z̃1 = (Rz̃1

,Sz̃1
) and z̃2 = (Rz̃2

,Sz̃2
) of a system z = (R,S). Furthermore,

∀(U1 ∈ Rz̃1
) ⊆ (U ∈ R), and ∀(U2 ∈ Rz̃2

) ⊆ (U ∈ R),

U1 ∩ U2 ̸= ∅,

Then,
z̃1 ∩ z̃2 = (Rz̃1∩̃z2

,Sz̃1∩̃z2
),

where,

Rz̃1∩̃z2
= {U1 ∩ U2

∣∣ ∀(U1 ∈ Rz̃1
) ⊆ (U ∈ R)},∀(U2 ∈ Rz̃2

) ⊆ (U ∈ R)},
Sz̃1∩̃z2

= S|R
z̃1∩̃z2

.

The intersection of subsystems is defined only when the intersection of their
relata do not result in a nullset. This then ensure that the following is true.

Theorem B.1.1. Intersection of
subsystems is a

subsystem

If we are given subsystems z̃1 and z̃2 of a system z. Then
z̃1 ∩ z̃2 is also a subsystem of z.

Proof. The proof follows by inspection, as in Theorem 2.1.1. ■

164 Miscellaneous Definitions and Proofs Appendix B

This page was left intentionally blank.

165

Appendix C

Hyperparameters

C.1 Cartpole
The policies for these problems were composed of neural networks with H
hidden units in a single hidden layer. The non-linear component of the hidden
layer was the TANH function; the final output passed through a SOFTMAX
layer. The input for these networks were the concatenated vector (gt, st, zt).
For the MTRL case, we preprocessed the input by computing the outer product
between state vector s and the concatenation of the latent variables z and g.
We then flattened the outer product and concatenated the original input vector
once more.

The hyperparameters for the single-embedding and independent algorithms
are the same as the MTRL values from Table C.1. The dimension of the single
embedding was equal to the sum of the dimensions of the reward and dynamics
latent variables.

C.2 Distral
The hyperparameters for Distral were chosen as β = 10, α = 0.5 and all
learning rates were 10−4, whereas the network architecture consisted of two
layers with 50 hidden neurons and ReLU non-linearity.

166 Hyperparameters Chapter C

Table C.1. Cartpole hyperparameters

Parameter MTRL HRL
dim z 2 -
dim g 2 -
γ 0.99 0.99
H 2 100
αd 50000 -
αr 1000 -
απ ∞ 50

π learning rate 0.002 0.002
qδ, qω learning rates 0.002 -

βart 0.02 0.02
Max episode length 300 2000

Number of tasks 9 1
Batch size per task 4 10

Extended policy input Concat and outer product -

167

List of Figures

1.1 Map of Definitions for Chapter 2. 19
1.2 Map of Definitions for Chapter 3. 19
1.3 Map of Definitions for Chapter 4. Dashed boxes are definitions

from other chapters. Relationships between these, if any, are
not depicted here. 19

1.4 Map of Definitions for Chapter 5. Dashed boxes are definitions
from other chapters. Relationships between these, if any, are
not depicted here. 20

1.5 Map of Definitions for Chapter 6. 20
1.6 Map of Definitions for Chapter 7. Dashed boxes are definitions

from other chapters. Relationships between these, if any, are
not depicted here. 21

2.1 The regular structure of a honeycomb pattern. 26
2.2 The pendulum problem is to find an optimal policy π∗ that

applies torque τ at the pivot of a pendulum of mass m and length
l to move it from its lowest position to its highest position, and
to balance it there. The optimality of the policy is determined
by some reward function. 39

2.3 Graphical representations of reinforcement learning. 40

3.1 Visualisation of the symmetries of a single layer, 2 node, ReLU
neural network, as in Example 3.1.3.. 55

5.1 An example of the commutative diagram that must be satisfied
by a representation of a system. Here, the structure map is
f : X → Y . 74

5.2 An example of a commutative diagram that must be satisfied
by equivalent representations of a system. Here, the structure
map is f : X → Y . 76

168 List of Figures Chapter 9

5.3 A topological manifold M with examples of its coordinate charts.
We see here that despite being a complicated topological entity
(See the hole in the middle), locally, it is equivalent to R2.
Further, note that the chart transition map ϕ◦ψ−1 : VR2 → UR2

exists because a homeomorphism is invertible and continuous,
since the composition of continuous maps remains so. 80

5.4 Two representations of the sin function. On the left, it is written
in mathematical notation; on the right, it is drawn as a graph. . 82

6.1 A rotating and translating set of point masses. 90
6.2 Interframe compression, illustrated using two images, or frames

set in the same scene. 93
6.3 A zoo of animals. Here, the set of properties is

{
psize =

{1, 2, 3}, pgenus = {cat, owl}
}
. Each animal in the zoo can be

identified by its size and genus.. 95
6.4 Different partitions (and therefore classifications) of our zoo of

cats and owls. 99

7.1 Comparison of tessellation and parallel spaces. The shaded
regions denote the subsets we are considering in each case. A
tessellation creates disjoint, smaller subsets that are of the same
dimension as the original set. Parallel spaces on the other hand
creates disjoint subsets that are of a lower dimension than the
original set.. .107

7.2 A 1-dimensional regular foliation on R2. 109

8.1 Example network architectures for multitask learning and in-
ductive transfer learning. 120

8.2 The distinction between similarity and relatedness. Similarity is
defined in terms of an ϵ-ball around a particular element. Here,
points t2 and t3 are similar to t1. On the other hand, relatedness
is defined in terms of a transformation set; this relationship
is shown as a line joining them. Thus, tasks t1, t2 and t3 are
related to each other. However, t4 is not related to t2 and t1
though they are similar; t3 is not similar to t2 and t1, though
they are related. 122

8.3 A foliation in the space (θ, c1, ..., ck, ..., cK) gives us what we
expect from a prototypical network. For a given dataset D, we
find θ during the initial training phase. For a given task, which
has classes from {2, 4, 5} ⊂ {1, ...,K}, the values (c2, c4, c5)
define the distribution over the class probabilities of a particular
input x. These values are calculated from a small task-specific
dataset Dt = {(x1, 2), (x2, 2), (x3, 4), (x4, 4), (x5, 5), (x6, 5)}, in
this example. 123

8.4 MAML finds an optimal initial model m0 such that solutions to
other tasks m∗

1, m∗
2 and m∗

3 are k gradient descent steps away. . . 125

Section 169

8.5 A pictorial representation of Theorem 8.3.2. The arrows show
the flows, starting at m0 along the positive t direction for each
task. Centered at each m∗

ti , we have drawn some of the level
sets of the quadratic loss function, shown as dashed and dotted
circles. The leaf generated by MAML is the solid circle. 126

8.6 Generative model of trajectories. 130
8.7 The different goal positions used in the training tasks of the

cartpole problem for DSE. Note that the masses of the cart also
change, but are not depicted here. The cartpoles always started
in the middle position (with some noise). 131

8.8 Comparison of DSE-REINFORCE against other algorithms.
The columns represent the reward conditions, and the rows the
dynamics conditions, all in ascending order. 132

8.9 Manual generalisation of reward skill. by choosing the value of g.
(e) contains the trajectories of the tip of the pole corresponding
to the value of g chosen as per (d). The legend of Figure 8.8
applies. The colors in (e) correspond to the values of g in (d). . . 133

8.10 The different configurations for training and retraining. The
boxes are ordered in ascending order. The crossed out boxes are
those held out in the initial training. 134

8.11 The training performances of the initial training sets for each
configuration. The legend in Figure 8.8 applies. 134

8.12 Transfer performance of each configuration in Figure 8.10. The
legend in Figure 8.8 applies. The columns correspond to the
goals left, middle and right, respectively. 135

A.1 An open set in the standard topology on R2. Note that the
dashed lines imply that the boundary is not included. Further-
more, the open set U is populated with other open balls at all
other points p ∈ U . 154

A.2 A topological manifoldM with examples of its coordinate charts.
We see here that despite being a complicated topological entity
(See the hole in the middle), locally, it is equivalent to R2.
Further, note that the chart transition map ϕ◦ψ−1 : VR2 → UR2

exists because a homeomorphism is invertible, and is continuous
since the composition of continuous maps remains so. 159

170 List of Figures Chapter 9

This page was left intentionally blank.

171

List of Definitions

2.1.1 Structured System . 28
2.1.2 Structure . 28
2.1.3 Inheritence of systems . 30
2.1.4 Subsystem . 31
2.1.5 Union of subsystems . 31
2.2.1 Probative Process . 32
2.2.2 Data-generating Process . 33
2.2.3 Dataset . 33
2.2.4 Task . 33
2.3.1 Structure (probabilistic) . 34
2.3.2 System (probabilistic) . 34
2.3.3 Probative Process (probabilistic) 34
2.3.4 Data-generating Process (probabilistic) 34
2.3.5 Task (probabilistic) . 35
2.4.1 Task (Statistical learning theory) 35
2.5.1 Supervised Learning Task (Typical) 38
2.5.2 Supervised Learning Task . 38
2.5.3 Value Function . 40
2.5.4 Transition . 41
2.5.5 Single rollout . 41
2.5.6 t−rollout . 41
2.5.7 Rollout . 42
2.5.8 Task of Reinforcement Learning 42
2.6.1 System of functions . 44
2.6.2 Derived system . 44
2.6.3 Variation of a Derived system 45
2.6.4 Total Variation Space of a Derived System 46
2.6.5 Task Space . 47

3.1.1 Model Architecture . 51
3.2.1 Equivalence of Parameters . 53
3.2.2 Parametric Model Space . 54

4.1.1 Learning task . 65
4.1.2 Space of Learning Tasks . 65

172 List of Definitions Chapter 9

4.1.3 Space of Proxy maps . 66
4.1.4 Loss Function . 67
4.1.5 (Space of) Learning problem(s) 68
4.2.1 Learning Algorithm . 68
4.2.2 Gradient Descent . 69

5.1.1 Representation map . 71
5.1.2 Description . 72
5.1.3 Interpretation of a description 72
5.1.4 Representation of a system 73
5.1.5 Equivalence of representations 76
5.1.6 Induced Local representation 76
5.1.7 Total Representation . 77

6.3.1 Notion of Transfer . 98
6.3.2 Transfer . 99
6.3.3 Set of Related Objects . 99
6.3.4 Notion of Relatedness . 99
6.3.5 Pseudogroups . 100
6.3.6 Transfer between objects . 101
6.4.1 Transfer Task (Model) Space 102
6.4.2 Transfer loss function . 102
6.4.3 Learning to Transfer Algorithm 103
6.4.4 Learning by transfer . 103
6.4.5 Equivariance . 104
6.4.6 Learning to Transfer (Simple) 104

7.1.1 Regular Foliation . 108
7.1.2 Plaque . 109
7.1.3 Leaf . 110
7.1.4 Regular Foliation (Distribution) 110
7.1.5 Regular Foliation (Submersions) [69] 110
7.1.6 Singular Foliation [98] . 111

8.2.1 A Set of Similar Tasks . 122

A.1.1 Topology . 153
A.1.2 Metric . 154
A.2.1 Extended Real Line . 155
A.2.2 Non-negative Extended Real Line 156
A.2.3 σ−algebra . 156
A.2.4 Measurable Space . 156
A.2.5 Borel σ-algebra . 156
A.2.6 Measurable Map . 156
A.2.7 Measure . 156
A.2.8 Measure Space . 157
A.2.9 Induced Measure . 157

Section 173

A.2.10 Probability Measure . 158
A.2.11 Probability Space . 158
A.2.12 Random Variable . 158
A.3.1 Topological manifold . 158
A.3.2 Ck - Atlas . 160
A.4.1 Group . 160
A.4.2 Group action (left) . 161
A.4.3 Orbit . 161
A.4.4 Proper action . 162

B.1.1 Intersection of subsystems . 163

174 List of Definitions Chapter 9

This page was left intentionally blank.

175

List of Theorems, Lemmas and
Corollaries

2.1.1 Union of subsystems is a subsystem 32

3.3.1 Quotient Manifold Theorem (Theorem 21.10 [58]) 56
3.3.2 Removing points in ΘReLU maintains diffeomorphisms 57

5.1.1 Induced structure on quotient space 73
5.1.2 Theorem . 74

7.2.1 Relatedness from Fk . 112

8.3.2 MAML Foliation (simple) . 127
8.3.3 Corollary . 127

A.2.1 Induced measure is a measure 157

B.1.1 Intersection of subsystems is a subsystem 163

176 List of Theorems, Lemmas and Corollaries Chapter 9

This page was left intentionally blank.

177

List of Propositions and
Conjectures

8.3.1 Foliation induced by MAML 125

	Introduction
	Contributions
	Roadmap
	Map of Definitions
	Notes on notation

	I The Structure of Learning
	Tasks and Spaces of Tasks
	Structure and systems
	Hierarchies of systems
	Subsystems

	A Structural Definition of Tasks
	Interacting with systems

	Probability and Tasks
	Arguments for a Structural Definition of Tasks
	Examples of tasks in Machine Learning
	Task of Supervised Learning
	Task of Reinforcement Learning

	Spaces of Tasks
	Task spaces as Smooth Manifolds

	Models and Symmetries
	Model Architectures
	Symmetries in Architectures
	Parametric model spaces as smooth manifolds
	Visualising symmetries using GENNI

	Learning in Machines
	Learning Problems
	Subject of learning
	Loss functions

	Learning Algorithms
	Gradient Descent

	Representations and Learning
	Representations
	Representation of a system
	Equivalence of representations
	Local and Total Representations
	Examples of Representations
	Properties of Representations

	Learning in terms of Representations
	Relation to Category Theory

	II The Structure of Transfer
	Defining Transfer
	Everyday Examples of Transfer
	Bias and Transfer
	Notions of Transfer and Relatedness
	Relatedness

	Learning to Transfer
	Equivariance of Transfer

	Foliations and Transfer
	Foliations
	Relatedness from Foliations
	The leaf space and learning to transfer

	Examples
	Multitask Learning
	Transfer Learning
	Meta Learning
	Prototypical Networks: Simple Meta-Learning
	Model Agnostic Meta Learning (MAML)

	Reinforcement Learning
	Practical Implementation
	Experiments

	Discussion

	Conclusion
	Future Work

	Bibliography
	Appendix
	Mathematical Preliminaries
	Topology
	Measure Theory and Probability
	Manifolds
	Groups and Group Actions

	Miscellaneous Definitions and Proofs
	Intersection of Subsystems

	Hyperparameters
	Cartpole
	Distral

	List of Figures
	List of Definitions
	List of Theorems, Lemmas and Corollaries
	List of Propositions and Conjectures

